File size: 8,178 Bytes
108859b
 
 
 
 
 
 
 
 
6bffc42
 
 
108859b
 
068cb87
 
 
108859b
 
068cb87
7d3b7c8
9862d01
 
 
 
 
 
 
 
 
108859b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f46c0
 
108859b
 
84f46c0
108859b
 
 
7ba442a
108859b
 
 
 
068cb87
 
2572c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108859b
 
 
 
 
 
 
6bffc42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: transformers
license: apache-2.0
base_model: maximuspowers/bert-philosophy-adapted
tags:
- generated_from_trainer
model-index:
- name: bert-philosophy-classifier
  results: []
datasets:
- maximuspowers/philpapers-papers-summarized-labeled
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-philosophy-classifier

This model is a fine-tuned version of [maximuspowers/bert-philosophy-adapted](https://huggingface.co/maximuspowers/bert-philosophy-adapted) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5565
- Exact Match Accuracy: 0.2430
- Macro Precision: 0.5046
- Macro Recall: 0.2169
- Macro F1: 0.2688
- Micro Precision: 0.8130
- Micro Recall: 0.3380
- Micro F1: 0.4775
- Hamming Loss: 0.0709

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Exact Match Accuracy | Macro Precision | Macro Recall | Macro F1 | Micro Precision | Micro Recall | Micro F1 | Hamming Loss |
|:-------------:|:-------:|:----:|:---------------:|:--------------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------:|
| 1.9545        | 0.3521  | 100  | 1.0206          | 0.0071               | 0.0171          | 0.0027       | 0.0047   | 0.25            | 0.0096       | 0.0185   | 0.0992       |
| 1.4947        | 0.7042  | 200  | 0.9205          | 0.0                  | 0.0588          | 0.0003       | 0.0006   | 1.0             | 0.0011       | 0.0021   | 0.0972       |
| 1.2688        | 1.0563  | 300  | 0.8579          | 0.0                  | 0.0588          | 0.0003       | 0.0006   | 1.0             | 0.0011       | 0.0021   | 0.0972       |
| 1.2271        | 1.4085  | 400  | 0.9072          | 0.0071               | 0.0588          | 0.0030       | 0.0058   | 1.0             | 0.0107       | 0.0211   | 0.0963       |
| 1.1877        | 1.7606  | 500  | 0.7930          | 0.0353               | 0.0551          | 0.0136       | 0.0219   | 0.9375          | 0.0480       | 0.0913   | 0.0930       |
| 1.1545        | 2.1127  | 600  | 0.7768          | 0.0670               | 0.0537          | 0.0255       | 0.0346   | 0.9130          | 0.0896       | 0.1631   | 0.0894       |
| 1.1276        | 2.4648  | 700  | 0.7173          | 0.0864               | 0.0521          | 0.0303       | 0.0383   | 0.8850          | 0.1066       | 0.1903   | 0.0883       |
| 1.1083        | 2.8169  | 800  | 0.7093          | 0.0758               | 0.1126          | 0.0298       | 0.0394   | 0.9143          | 0.1023       | 0.1841   | 0.0883       |
| 1.0268        | 3.1690  | 900  | 0.6733          | 0.1041               | 0.1640          | 0.0517       | 0.0644   | 0.8057          | 0.1503       | 0.2534   | 0.0862       |
| 1.0161        | 3.5211  | 1000 | 0.6472          | 0.1164               | 0.1559          | 0.0634       | 0.0861   | 0.8533          | 0.1674       | 0.2799   | 0.0838       |
| 0.9917        | 3.8732  | 1100 | 0.7055          | 0.1358               | 0.2132          | 0.0736       | 0.0970   | 0.8465          | 0.1940       | 0.3157   | 0.0819       |
| 0.9533        | 4.2254  | 1200 | 0.6556          | 0.1834               | 0.2694          | 0.1242       | 0.1646   | 0.8812          | 0.2452       | 0.3837   | 0.0767       |
| 0.9747        | 4.5775  | 1300 | 0.6144          | 0.2011               | 0.2716          | 0.1285       | 0.1690   | 0.8773          | 0.2591       | 0.4      | 0.0756       |
| 0.9275        | 4.9296  | 1400 | 0.6027          | 0.2063               | 0.2682          | 0.1408       | 0.1804   | 0.8513          | 0.2868       | 0.4290   | 0.0743       |
| 0.8702        | 5.2817  | 1500 | 0.6040          | 0.2240               | 0.3197          | 0.1559       | 0.1977   | 0.8542          | 0.3060       | 0.4505   | 0.0726       |
| 0.8582        | 5.6338  | 1600 | 0.6104          | 0.2293               | 0.3684          | 0.1697       | 0.2177   | 0.8426          | 0.3081       | 0.4512   | 0.0729       |
| 0.8783        | 5.9859  | 1700 | 0.5885          | 0.2328               | 0.3749          | 0.1646       | 0.2117   | 0.8657          | 0.3092       | 0.4556   | 0.0719       |
| 0.8147        | 6.3380  | 1800 | 0.5681          | 0.2469               | 0.4728          | 0.1941       | 0.2427   | 0.8215          | 0.3337       | 0.4746   | 0.0719       |
| 0.8155        | 6.6901  | 1900 | 0.5858          | 0.2399               | 0.3577          | 0.1873       | 0.2337   | 0.8144          | 0.3369       | 0.4766   | 0.0720       |
| 0.812         | 7.0423  | 2000 | 0.5932          | 0.2434               | 0.5377          | 0.2240       | 0.2870   | 0.8285          | 0.3348       | 0.4768   | 0.0715       |
| 0.7735        | 7.3944  | 2100 | 0.5969          | 0.2504               | 0.4537          | 0.2217       | 0.2802   | 0.7844          | 0.3529       | 0.4868   | 0.0724       |
| 0.7747        | 7.7465  | 2200 | 0.5980          | 0.2734               | 0.5684          | 0.2460       | 0.3142   | 0.7941          | 0.3699       | 0.5047   | 0.0707       |
| 0.6935        | 8.0986  | 2300 | 0.5834          | 0.2822               | 0.4822          | 0.2493       | 0.3069   | 0.7669          | 0.3859       | 0.5135   | 0.0712       |
| 0.7359        | 8.4507  | 2400 | 0.5643          | 0.2875               | 0.5755          | 0.2854       | 0.3535   | 0.7991          | 0.3987       | 0.5320   | 0.0683       |
| 0.6547        | 8.8028  | 2500 | 0.5672          | 0.2875               | 0.5700          | 0.2989       | 0.3656   | 0.7878          | 0.4115       | 0.5406   | 0.0681       |
| 0.6568        | 9.1549  | 2600 | 0.5804          | 0.2857               | 0.5921          | 0.2826       | 0.3611   | 0.8174          | 0.3913       | 0.5292   | 0.0677       |
| 0.683         | 9.5070  | 2700 | 0.5911          | 0.2787               | 0.5610          | 0.2682       | 0.3399   | 0.7577          | 0.3934       | 0.5179   | 0.0713       |
| 0.6916        | 9.8592  | 2800 | 0.5553          | 0.2892               | 0.6354          | 0.3208       | 0.3899   | 0.7882          | 0.4126       | 0.5416   | 0.0680       |
| 0.6112        | 10.2113 | 2900 | 0.5829          | 0.3228               | 0.6405          | 0.3521       | 0.4351   | 0.7911          | 0.4563       | 0.5788   | 0.0646       |
| 0.6032        | 10.5634 | 3000 | 0.6113          | 0.3069               | 0.6247          | 0.3173       | 0.3949   | 0.7556          | 0.4350       | 0.5521   | 0.0687       |
| 0.5927        | 10.9155 | 3100 | 0.5666          | 0.3016               | 0.6423          | 0.3289       | 0.4154   | 0.8065          | 0.4222       | 0.5542   | 0.0661       |
| 0.5639        | 11.2676 | 3200 | 0.5527          | 0.3086               | 0.5956          | 0.3482       | 0.4169   | 0.7522          | 0.4563       | 0.5680   | 0.0675       |
| 0.5965        | 11.6197 | 3300 | 0.5370          | 0.3192               | 0.6174          | 0.3337       | 0.4061   | 0.7692          | 0.4584       | 0.5745   | 0.0661       |
| 0.5809        | 11.9718 | 3400 | 0.5517          | 0.3175               | 0.6677          | 0.3737       | 0.4510   | 0.7676          | 0.4542       | 0.5707   | 0.0665       |


### Framework versions

- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2