Taking 50 sec for me on Colab
I must be definitely missing something.
import time
text_hindi = "आज मैंने एक नई तकनीक के बारे में सीखा जो कृत्रिम बुद्धिमत्ता का उपयोग करके मानव जैसी आवाज़ उत्पन्न कर सकती है।"
s = time.time()
audio = generate_speech(text_hindi, speaker="kavya")
e = time.time()
d = e-s
print(d)
sf.write("output_hindi_kavya.wav", audio, 24000)
this is tking 50 sec
what am I missing?
Even on A100, it is taking time for me:
Complete code:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from snac import SNAC
import soundfile as sf
Model configuration for 4-bit inference
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
device = torch.device("cuda:0")
Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"maya-research/veena-tts",
quantization_config=quantization_config,
device_map={"": device}, # Force all model weights to cuda:0
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("maya-research/veena-tts", trust_remote_code=True)
Initialize SNAC decoder
#snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().cuda()
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
Control token IDs (fixed for Veena)
START_OF_SPEECH_TOKEN = 128257
END_OF_SPEECH_TOKEN = 128258
START_OF_HUMAN_TOKEN = 128259
END_OF_HUMAN_TOKEN = 128260
START_OF_AI_TOKEN = 128261
END_OF_AI_TOKEN = 128262
AUDIO_CODE_BASE_OFFSET = 128266
Available speakers
speakers = ["kavya", "agastya", "maitri", "vinaya"]
def generate_speech(text, speaker="kavya", temperature=0.4, top_p=0.9):
"""Generate speech from text using specified speaker voice"""
# Prepare input with speaker token
prompt = f"<spk_{speaker}> {text}"
prompt_tokens = tokenizer.encode(prompt, add_special_tokens=False)
# Construct full sequence: [HUMAN] <spk_speaker> text [/HUMAN] [AI] [SPEECH]
input_tokens = [
START_OF_HUMAN_TOKEN,
*prompt_tokens,
END_OF_HUMAN_TOKEN,
START_OF_AI_TOKEN,
START_OF_SPEECH_TOKEN
]
input_ids = torch.tensor([input_tokens], device=model.device)
input_ids = torch.tensor([input_tokens], device=device)
# Calculate max tokens based on text length
max_tokens = min(int(len(text) * 1.3) * 7 + 21, 700)
# Generate audio tokens
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.05,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=[END_OF_SPEECH_TOKEN, END_OF_AI_TOKEN]
)
# Extract SNAC tokens
generated_ids = output[0][len(input_tokens):].tolist()
snac_tokens = [
token_id for token_id in generated_ids
if AUDIO_CODE_BASE_OFFSET <= token_id < (AUDIO_CODE_BASE_OFFSET + 7 * 4096)
]
if not snac_tokens:
raise ValueError("No audio tokens generated")
# Decode audio
audio = decode_snac_tokens(snac_tokens, snac_model)
return audio
def decode_snac_tokens(snac_tokens, snac_model):
"""De-interleave and decode SNAC tokens to audio"""
if not snac_tokens or len(snac_tokens) % 7 != 0:
return None
# De-interleave tokens into 3 hierarchical levels
codes_lvl = [[] for _ in range(3)]
llm_codebook_offsets = [AUDIO_CODE_BASE_OFFSET + i * 4096 for i in range(7)]
for i in range(0, len(snac_tokens), 7):
# Level 0: Coarse (1 token)
codes_lvl[0].append(snac_tokens[i] - llm_codebook_offsets[0])
# Level 1: Medium (2 tokens)
codes_lvl[1].append(snac_tokens[i+1] - llm_codebook_offsets[1])
codes_lvl[1].append(snac_tokens[i+4] - llm_codebook_offsets[4])
# Level 2: Fine (4 tokens)
codes_lvl[2].append(snac_tokens[i+2] - llm_codebook_offsets[2])
codes_lvl[2].append(snac_tokens[i+3] - llm_codebook_offsets[3])
codes_lvl[2].append(snac_tokens[i+5] - llm_codebook_offsets[5])
codes_lvl[2].append(snac_tokens[i+6] - llm_codebook_offsets[6])
# Convert to tensors for SNAC decoder
hierarchical_codes = []
for lvl_codes in codes_lvl:
tensor = torch.tensor(lvl_codes, dtype=torch.int32, device=device).unsqueeze(0)
if torch.any((tensor < 0) | (tensor > 4095)):
raise ValueError("Invalid SNAC token values")
hierarchical_codes.append(tensor)
# Decode with SNAC
with torch.no_grad():
audio_hat = snac_model.decode(hierarchical_codes)
return audio_hat.squeeze().clamp(-1, 1).cpu().numpy()
--- Example Usage ---
Hindi
import time
s = time.time()
text_hindi = "आज मैंने एक नई तकनीक के बारे में सीखा जो कृत्रिम बुद्धिमत्ता का उपयोग करके मानव जैसी आवाज़ उत्पन्न कर सकती है।"
audio = generate_speech(text_hindi, speaker="kavya")
sf.write("output_hindi_kavya.wav", audio, 24000)
Code-mixed
text_mixed = "मैं तो पूरा presentation prepare कर चुका हूं! कल रात को ही मैंने पूरा code base चेक किया।"
audio = generate_speech(text_mixed, speaker="maitri")
sf.write("output_mixed_maitri.wav", audio, 24000)
e = time.time()
d = e-s
print(d)
on A100, taking 20 secs
Taking is going in this step only:
Generate audio tokens
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.05,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=[END_OF_SPEECH_TOKEN, END_OF_AI_TOKEN]
)
I am running on H100, just the short sentence "is it working perfect" taking around 6 second.
I am running on H100,given example takes 13 seconds.. I am losing trust on these metrics they publish for marketing.
https://huggingface.co/maya-research/Veena/discussions/11#68642fe48c9c3f4bb93e7af4
This is a Text-To-Text model, which is converted to hearable speech bytes(using SNAC). Implement a sequencing way of streaming and vllm's async engine to flush out and convert those tokens to audio right away. so you dont have to wait till 30s to listen to a sentence. Infernece speed is vastly fast in latest gen of nvidia GPUs as we observed. A100, H100 should also be good with <200ms runtime. https://docs.vllm.ai/en/v0.6.5/dev/engine/async_llm_engine.html
And @arunneel before losing trust on these metrics, maybe you should read all the community replies.