windowz_test-020525-1
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Model Preparation Time: 0.001
- Accuracy: 0.9855
- F1: 0.9845
- Iou: 0.9719
- Contour Dice: 0.9827
- Per Class Metrics: {0: {'f1': 0.99421, 'iou': 0.98849, 'accuracy': 0.99132, 'contour_dice': 0.99421}, 1: {'f1': 0.97069, 'iou': 0.94305, 'accuracy': 0.98574, 'contour_dice': 0.97069}, 2: {'f1': 0.57177, 'iou': 0.40033, 'accuracy': 0.99387, 'contour_dice': 0.57177}}
- Loss: 0.1455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Model Preparation Time | Dice | Class Metrics | Validation Loss | |
---|---|---|---|---|---|---|---|
1.0553 | 0.1001 | 513 | 0.001 | 0.2042 | 0.4026 | {0: {'f1': 0.00261, 'iou': 0.00131, 'accuracy': 0.25279, 'contour_dice': 0.00261}, 1: {'f1': 0.91168, 'iou': 0.83769, 'accuracy': 0.95417, 'contour_dice': 0.91168}, 2: {'f1': 0.0098, 'iou': 0.00492, 'accuracy': 0.27529, 'contour_dice': 0.0098}} | 1.0723 |
0.9452 | 0.2002 | 1026 | 0.001 | 0.7779 | 0.7181 | {0: {'f1': 0.92874, 'iou': 0.86697, 'accuracy': 0.88625, 'contour_dice': 0.92874}, 1: {'f1': 0.69461, 'iou': 0.53211, 'accuracy': 0.88238, 'contour_dice': 0.69461}, 2: {'f1': 0.05695, 'iou': 0.02931, 'accuracy': 0.98261, 'contour_dice': 0.05695}} | 0.8706 |
0.8477 | 0.3002 | 1539 | 0.001 | 0.8084 | 0.7673 | {0: {'f1': 0.93867, 'iou': 0.88442, 'accuracy': 0.90292, 'contour_dice': 0.93867}, 1: {'f1': 0.74567, 'iou': 0.59448, 'accuracy': 0.89835, 'contour_dice': 0.74567}, 2: {'f1': 0.43351, 'iou': 0.27674, 'accuracy': 0.99005, 'contour_dice': 0.43351}} | 0.4034 |
0.8114 | 0.4003 | 2052 | 0.001 | 0.7795 | 0.7144 | {0: {'f1': 0.92943, 'iou': 0.86817, 'accuracy': 0.88683, 'contour_dice': 0.92943}, 1: {'f1': 0.69334, 'iou': 0.53062, 'accuracy': 0.88266, 'contour_dice': 0.69334}, 2: {'f1': 0.24887, 'iou': 0.14212, 'accuracy': 0.9898, 'contour_dice': 0.24887}} | 0.5827 |
0.7701 | 0.5004 | 2565 | 0.001 | 0.9032 | 0.9078 | {0: {'f1': 0.97215, 'iou': 0.94582, 'accuracy': 0.95722, 'contour_dice': 0.97215}, 1: {'f1': 0.88981, 'iou': 0.8015, 'accuracy': 0.95011, 'contour_dice': 0.88981}, 2: {'f1': 0.23167, 'iou': 0.13101, 'accuracy': 0.99155, 'contour_dice': 0.23167}} | 0.3269 |
0.7462 | 0.6005 | 3078 | 0.001 | 0.9018 | 0.9034 | {0: {'f1': 0.97101, 'iou': 0.94366, 'accuracy': 0.9554, 'contour_dice': 0.97101}, 1: {'f1': 0.88956, 'iou': 0.80109, 'accuracy': 0.95028, 'contour_dice': 0.88956}, 2: {'f1': 0.28195, 'iou': 0.16411, 'accuracy': 0.99182, 'contour_dice': 0.28195}} | 0.3012 |
0.7083 | 0.7005 | 3591 | 0.001 | 0.8870 | 0.8875 | {0: {'f1': 0.96677, 'iou': 0.93567, 'accuracy': 0.94869, 'contour_dice': 0.96677}, 1: {'f1': 0.86981, 'iou': 0.76962, 'accuracy': 0.94193, 'contour_dice': 0.86981}, 2: {'f1': 0.08311, 'iou': 0.04336, 'accuracy': 0.99081, 'contour_dice': 0.08311}} | 0.3264 |
0.6957 | 0.8006 | 4104 | 0.001 | 0.8885 | 0.8861 | {0: {'f1': 0.96671, 'iou': 0.93556, 'accuracy': 0.94848, 'contour_dice': 0.96671}, 1: {'f1': 0.87151, 'iou': 0.77229, 'accuracy': 0.94332, 'contour_dice': 0.87151}, 2: {'f1': 0.25672, 'iou': 0.14726, 'accuracy': 0.99154, 'contour_dice': 0.25672}} | 0.3388 |
0.6415 | 0.9007 | 4617 | 0.001 | 0.9228 | 0.9283 | {0: {'f1': 0.97759, 'iou': 0.95616, 'accuracy': 0.96585, 'contour_dice': 0.97759}, 1: {'f1': 0.91553, 'iou': 0.84422, 'accuracy': 0.96085, 'contour_dice': 0.91553}, 2: {'f1': 0.45503, 'iou': 0.29452, 'accuracy': 0.99296, 'contour_dice': 0.45503}} | 0.2154 |
0.66 | 1.0008 | 5130 | 0.001 | 0.9150 | 0.9178 | {0: {'f1': 0.97496, 'iou': 0.95115, 'accuracy': 0.96161, 'contour_dice': 0.97496}, 1: {'f1': 0.90465, 'iou': 0.82589, 'accuracy': 0.95679, 'contour_dice': 0.90465}, 2: {'f1': 0.509, 'iou': 0.34138, 'accuracy': 0.99326, 'contour_dice': 0.509}} | 0.2575 |
0.627 | 1.1009 | 5643 | 0.001 | 0.9406 | 0.9518 | {0: {'f1': 0.98469, 'iou': 0.96984, 'accuracy': 0.97676, 'contour_dice': 0.98469}, 1: {'f1': 0.93594, 'iou': 0.87959, 'accuracy': 0.96989, 'contour_dice': 0.93594}, 2: {'f1': 0.32331, 'iou': 0.19282, 'accuracy': 0.99207, 'contour_dice': 0.32331}} | 0.2241 |
0.6033 | 1.2009 | 6156 | 0.001 | 0.9191 | 0.9237 | {0: {'f1': 0.97668, 'iou': 0.95443, 'accuracy': 0.96429, 'contour_dice': 0.97668}, 1: {'f1': 0.91018, 'iou': 0.83517, 'accuracy': 0.95907, 'contour_dice': 0.91018}, 2: {'f1': 0.42756, 'iou': 0.27191, 'accuracy': 0.99276, 'contour_dice': 0.42756}} | 0.2139 |
0.6268 | 1.3010 | 6669 | 0.001 | 0.9675 | 0.9773 | {0: {'f1': 0.99254, 'iou': 0.98518, 'accuracy': 0.98877, 'contour_dice': 0.99254}, 1: {'f1': 0.96583, 'iou': 0.93391, 'accuracy': 0.98358, 'contour_dice': 0.96583}, 2: {'f1': 0.59851, 'iou': 0.42705, 'accuracy': 0.9941, 'contour_dice': 0.59851}} | 0.1872 |
0.5698 | 1.4011 | 7182 | 0.001 | 0.9597 | 0.9709 | {0: {'f1': 0.99051, 'iou': 0.98119, 'accuracy': 0.98568, 'contour_dice': 0.99051}, 1: {'f1': 0.95785, 'iou': 0.91911, 'accuracy': 0.97981, 'contour_dice': 0.95785}, 2: {'f1': 0.46278, 'iou': 0.30105, 'accuracy': 0.99323, 'contour_dice': 0.46278}} | 0.1653 |
0.5933 | 1.5012 | 7695 | 0.001 | 0.9349 | 0.9416 | {0: {'f1': 0.98167, 'iou': 0.96399, 'accuracy': 0.97209, 'contour_dice': 0.98167}, 1: {'f1': 0.93053, 'iou': 0.87009, 'accuracy': 0.96767, 'contour_dice': 0.93053}, 2: {'f1': 0.45029, 'iou': 0.29056, 'accuracy': 0.99309, 'contour_dice': 0.45029}} | 0.1594 |
0.6071 | 1.6012 | 8208 | 0.001 | 0.9719 | 0.9827 | {0: {'f1': 0.99421, 'iou': 0.98849, 'accuracy': 0.99132, 'contour_dice': 0.99421}, 1: {'f1': 0.97069, 'iou': 0.94305, 'accuracy': 0.98574, 'contour_dice': 0.97069}, 2: {'f1': 0.57177, 'iou': 0.40033, 'accuracy': 0.99387, 'contour_dice': 0.57177}} | 0.1455 |
0.5867 | 1.7013 | 8721 | 0.001 | 0.9567 | 0.9657 | {0: {'f1': 0.9889, 'iou': 0.97805, 'accuracy': 0.98323, 'contour_dice': 0.9889}, 1: {'f1': 0.95391, 'iou': 0.91189, 'accuracy': 0.97813, 'contour_dice': 0.95391}, 2: {'f1': 0.59149, 'iou': 0.41994, 'accuracy': 0.99415, 'contour_dice': 0.59149}} | 0.1466 |
0.5937 | 1.8014 | 9234 | 0.001 | 0.9305 | 0.9356 | {0: {'f1': 0.97999, 'iou': 0.96076, 'accuracy': 0.96946, 'contour_dice': 0.97999}, 1: {'f1': 0.92376, 'iou': 0.85832, 'accuracy': 0.96491, 'contour_dice': 0.92376}, 2: {'f1': 0.55434, 'iou': 0.38345, 'accuracy': 0.99389, 'contour_dice': 0.55434}} | 0.2816 |
0.6021 | 1.9015 | 9747 | 0.001 | 0.9137 | 0.9154 | {0: {'f1': 0.97439, 'iou': 0.95005, 'accuracy': 0.96068, 'contour_dice': 0.97439}, 1: {'f1': 0.90445, 'iou': 0.82557, 'accuracy': 0.95681, 'contour_dice': 0.90445}, 2: {'f1': 0.46077, 'iou': 0.29935, 'accuracy': 0.99314, 'contour_dice': 0.46077}} | 0.1777 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.