windowz_test-020625

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Model Preparation Time: 0.001
  • Accuracy: 0.9796
  • F1: 0.9749
  • Iou: 0.9601
  • Contour Dice: 0.9763
  • Per Class Metrics: {0: {'f1': 0.99218, 'iou': 0.98448, 'accuracy': 0.98824, 'contour_dice': 0.99218}, 1: {'f1': 0.95952, 'iou': 0.92218, 'accuracy': 0.98031, 'contour_dice': 0.95952}, 2: {'f1': 0.00151, 'iou': 0.00075, 'accuracy': 0.9906, 'contour_dice': 0.00151}}
  • Loss: 0.2439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1

Training results

Training Loss Epoch Step Model Preparation Time Dice Class Metrics Validation Loss
1.1036 0.0501 257 0.001 0.5982 0.2778 {0: {'f1': 0.86413, 'iou': 0.76077, 'accuracy': 0.77129, 'contour_dice': 0.86413}, 1: {'f1': 0.21374, 'iou': 0.11966, 'accuracy': 0.76928, 'contour_dice': 0.21374}, 2: {'f1': 0.01912, 'iou': 0.00965, 'accuracy': 0.97722, 'contour_dice': 0.01912}} 1.0658
1.0397 0.1003 514 0.001 0.6281 0.3228 {0: {'f1': 0.87827, 'iou': 0.78297, 'accuracy': 0.79364, 'contour_dice': 0.87827}, 1: {'f1': 0.29681, 'iou': 0.17426, 'accuracy': 0.79658, 'contour_dice': 0.29681}, 2: {'f1': 0.02455, 'iou': 0.01243, 'accuracy': 0.98492, 'contour_dice': 0.02455}} 0.8951
0.9914 0.1504 771 0.001 0.6255 0.3002 {0: {'f1': 0.87683, 'iou': 0.78067, 'accuracy': 0.79052, 'contour_dice': 0.87683}, 1: {'f1': 0.29198, 'iou': 0.17095, 'accuracy': 0.79672, 'contour_dice': 0.29198}, 2: {'f1': 0.00531, 'iou': 0.00266, 'accuracy': 0.98785, 'contour_dice': 0.00531}} 1.0984
0.9099 0.2005 1028 0.001 0.6361 0.3306 {0: {'f1': 0.87929, 'iou': 0.78459, 'accuracy': 0.79547, 'contour_dice': 0.87929}, 1: {'f1': 0.33695, 'iou': 0.20261, 'accuracy': 0.80371, 'contour_dice': 0.33695}, 2: {'f1': 0.00299, 'iou': 0.0015, 'accuracy': 0.9905, 'contour_dice': 0.00299}} 0.8636
0.8914 0.2507 1285 0.001 0.8276 0.7951 {0: {'f1': 0.945, 'iou': 0.89573, 'accuracy': 0.91327, 'contour_dice': 0.945}, 1: {'f1': 0.78751, 'iou': 0.6495, 'accuracy': 0.9121, 'contour_dice': 0.78751}, 2: {'f1': 0.00757, 'iou': 0.0038, 'accuracy': 0.99051, 'contour_dice': 0.00757}} 0.5194
0.8394 0.3008 1542 0.001 0.8440 0.8288 {0: {'f1': 0.94952, 'iou': 0.9039, 'accuracy': 0.92204, 'contour_dice': 0.94952}, 1: {'f1': 0.81787, 'iou': 0.69186, 'accuracy': 0.9188, 'contour_dice': 0.81787}, 2: {'f1': 0.01225, 'iou': 0.00616, 'accuracy': 0.99049, 'contour_dice': 0.01225}} 0.4643
0.8066 0.3510 1799 0.001 0.8633 0.8558 {0: {'f1': 0.95845, 'iou': 0.92021, 'accuracy': 0.93548, 'contour_dice': 0.95845}, 1: {'f1': 0.83803, 'iou': 0.72121, 'accuracy': 0.92909, 'contour_dice': 0.83803}, 2: {'f1': 0.00216, 'iou': 0.00108, 'accuracy': 0.99053, 'contour_dice': 0.00216}} 0.4510
0.7995 0.4011 2056 0.001 0.8625 0.8540 {0: {'f1': 0.95811, 'iou': 0.91959, 'accuracy': 0.9349, 'contour_dice': 0.95811}, 1: {'f1': 0.83706, 'iou': 0.71978, 'accuracy': 0.92889, 'contour_dice': 0.83706}, 2: {'f1': 0.00225, 'iou': 0.00113, 'accuracy': 0.99056, 'contour_dice': 0.00225}} 0.3804
0.7606 0.4512 2313 0.001 0.8932 0.8965 {0: {'f1': 0.96927, 'iou': 0.94038, 'accuracy': 0.95262, 'contour_dice': 0.96927}, 1: {'f1': 0.87794, 'iou': 0.78243, 'accuracy': 0.94526, 'contour_dice': 0.87794}, 2: {'f1': 0.00084, 'iou': 0.00042, 'accuracy': 0.99059, 'contour_dice': 0.00084}} 0.3936
0.7392 0.5014 2570 0.001 0.9602 0.9777 {0: {'f1': 0.99254, 'iou': 0.9852, 'accuracy': 0.98882, 'contour_dice': 0.99254}, 1: {'f1': 0.9586, 'iou': 0.92049, 'accuracy': 0.97966, 'contour_dice': 0.9586}, 2: {'f1': 7e-05, 'iou': 3e-05, 'accuracy': 0.99059, 'contour_dice': 7e-05}} 0.3214
0.7435 0.5515 2827 0.001 0.9601 0.9763 {0: {'f1': 0.99218, 'iou': 0.98448, 'accuracy': 0.98824, 'contour_dice': 0.99218}, 1: {'f1': 0.95952, 'iou': 0.92218, 'accuracy': 0.98031, 'contour_dice': 0.95952}, 2: {'f1': 0.00151, 'iou': 0.00075, 'accuracy': 0.9906, 'contour_dice': 0.00151}} 0.2439
0.7194 0.6016 3084 0.001 0.8241 0.7995 {0: {'f1': 0.94141, 'iou': 0.8893, 'accuracy': 0.90932, 'contour_dice': 0.94141}, 1: {'f1': 0.79144, 'iou': 0.65487, 'accuracy': 0.90763, 'contour_dice': 0.79144}, 2: {'f1': 0.00311, 'iou': 0.00156, 'accuracy': 0.99061, 'contour_dice': 0.00311}} 0.3798
0.701 0.6518 3341 0.001 0.9695 0.9865 {0: {'f1': 0.99549, 'iou': 0.99102, 'accuracy': 0.99324, 'contour_dice': 0.99549}, 1: {'f1': 0.96954, 'iou': 0.94087, 'accuracy': 0.98502, 'contour_dice': 0.96954}, 2: {'f1': 0.00034, 'iou': 0.00017, 'accuracy': 0.99059, 'contour_dice': 0.00034}} 0.2690
0.6962 0.7019 3598 0.001 0.9565 0.9714 {0: {'f1': 0.99065, 'iou': 0.98148, 'accuracy': 0.98591, 'contour_dice': 0.99065}, 1: {'f1': 0.95637, 'iou': 0.91639, 'accuracy': 0.97893, 'contour_dice': 0.95637}, 2: {'f1': 0.00076, 'iou': 0.00038, 'accuracy': 0.9906, 'contour_dice': 0.00076}} 0.2761

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.5.1+cu124
  • Datasets 2.21.0
  • Tokenizers 0.20.3
Downloads last month
0
Safetensors
Model size
544k params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.