Model description

This model fine-tuned distilbert-base-uncased on the dair-ai/emotion (Labeled English Tweets) dataset for lightweight emotion recognition.


Emotion Label Classes

| SADNESS | JOY | LOVE | ANGER | FEAR | SURPRISE |


Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.2232 0.9215
No log 2.0 250 0.1552 0.9385
No log 3.0 375 0.1469 0.9375
0.2724 4.0 500 0.1395 0.933

Quick Demo

from transformers import pipeline
classifier = pipeline(
    task="text-classification",
    model="mehmet0sahinn/distilbert-emotion",
)

text = "I'm absolutely thrilled this works like a charm!"
print(classifier(text))

Dataset

  • Source: dair-ai/emotion
  • Language: English
  • Train Size: 16K tweets
  • Validation Size: 2K
  • Test Size: 2K

Resources


License

This model is licensed under the MIT License.

Downloads last month
4
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mehmet0sahinn/distilbert-emotion

Finetuned
(9927)
this model

Dataset used to train mehmet0sahinn/distilbert-emotion