π§ CooperLM-354M (4-bit Quantized)
This is a 4-bit quantized version of CooperLM-354M, a 354M parameter GPT-2 style language model trained from scratch on a subset of Wikipedia, BookCorpus, and OpenWebText.
The quantized model is intended for faster inference and smaller memory footprint, especially useful for CPU or limited-GPU setups.
π Model Details
- Base Model: mehta/CooperLM-354M
- Architecture: GPT-2 (24 layers, 16 heads, 1024 hidden size)
- Quantization: 4-bit integer weights via
AutoGPTQ
(safetensors) - Precision: INT4
π οΈ How to Use
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("mehta/CooperLM-354M-4bit")
model = AutoModelForCausalLM.from_pretrained("mehta/CooperLM-354M-4bit")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "In the distant future,"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_length=100,
temperature=0.8,
top_p=0.95,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support