Malaysian Finetuned Instruct LoRA
Collection
Continue finetuning Instruct model using LoRA from 0.5B up to 72B.
•
16 items
•
Updated
Continue finetuning https://huggingface.co/google/gemma-3-27b-it on highly curated 1.5B tokens Malaysian instruction dataset.
Finetune on mesolitica/Malaysian-SFT to make the model understand Malaysian context.
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "embed_tokens", "lm_head"]
.Source code at https://github.com/mesolitica/malaya/tree/master/session/gemma3
Based on 0-shot exact first token match using vLLM,
Model Accuracy shot category
0 Malaysian-gemma-3-27b-it 72.697503 0 STEM
1 Malaysian-gemma-3-27b-it 76.781170 0 Language
2 Malaysian-gemma-3-27b-it 68.227812 0 Social science
3 Malaysian-gemma-3-27b-it 68.385704 0 Others
4 Malaysian-gemma-3-27b-it 71.535836 0 Humanities
Model : Malaysian-gemma-3-27b-it
Metric : full
Shot : 0
average accuracy 71.52769173584439
accuracy for STEM 72.6975030699959
accuracy for Language 76.78117048346056
accuracy for Social science 68.22781150621567
accuracy for Others 68.38570400575678
accuracy for Humanities 71.5358361774744
Currently the original model not able to use guided decoding in vLLM.
Special thanks to https://www.sns.com.my for 8x H100 node!