Noisy Translation Base T5

Trained on 1536 context length, able to translate malay, pasar malay (social media texts or local context), english, manglish, javanese, banjarese and indonesian to target language. It also able to maintain the text structure as it is and only translate necessary texts, eg, programming code.

Try it at https://huggingface.co/spaces/mesolitica/malaysian-translation

how-to

from transformers import T5ForConditionalGeneration, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
    'mesolitica/translation-t5-base-standard-bahasa-cased',
    use_fast=False
)
model = T5ForConditionalGeneration.from_pretrained(
    'mesolitica/translation-t5-base-standard-bahasa-cased'
)
s = 'Hai, ada yang bisa saya bantu?'
input_ids = tokenizer.encode(f'terjemah ke Melayu: {s}', return_tensors = 'pt')
outputs = model.generate(input_ids, max_length = 100)
all_special_ids = [0, 1, 2]
outputs = [i for i in outputs[0] if i not in all_special_ids]
print(tokenizer.decode(outputs, spaces_between_special_tokens = False))
Downloads last month
370
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.