SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("micky1625/finetuned2")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.65
cosine_accuracy@3 0.8
cosine_accuracy@5 0.85
cosine_accuracy@10 0.9
cosine_precision@1 0.65
cosine_precision@3 0.2667
cosine_precision@5 0.17
cosine_precision@10 0.09
cosine_recall@1 0.65
cosine_recall@3 0.8
cosine_recall@5 0.85
cosine_recall@10 0.9
cosine_ndcg@10 0.7818
cosine_mrr@10 0.7433
cosine_map@100 0.7483

Training Details

Training Dataset

Unnamed Dataset

  • Size: 5 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 5 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 16 tokens
    • mean: 37.4 tokens
    • max: 55 tokens
    • min: 406 tokens
    • mean: 406.0 tokens
    • max: 406 tokens
  • Samples:
    sentence_0 sentence_1
    ์ธ์ฒด ์ˆ˜๊ณก๋Œ€์‚ฌ์— ์žˆ์–ด ์•กํ•ด(ๆถฒๆตท)์˜ ํƒ์žฌ(ๆฟๆป“)๊ฐ€ ๋ณด์ตํ•˜๋Š” ์žฅ๋ถ€์—์„œ ์ƒ์„ฑ๋˜๋Š” ๊ฒƒ์€? [1-1] ์ฒœ๊ธฐ(ๅคฉๆฉŸ)์— ๋„ท์ด ์žˆ๋Š”๋ฐ ์ฒซ์งธ๋Š” ์ง€๋ฐฉ(ๅœฐๆ–น)์ด๊ณ  ๋‘˜์งธ๋Š” ์ธ๋ฅœ(ไบบๅ€ซ)์ด๊ณ  ์…‹์งธ๋Š” ์„ธํšŒ(ไธ–ๆœƒ)์ด
    ๊ณ  ๋„ท์งธ๋Š” ์ฒœ์‹œ(ๅคฉๆ™‚)์ด๋‹ค.
    [1-2] ์ธ์‚ฌ(ไบบไบ‹)์— ๋„ท์ด ์žˆ๋Š”๋ฐ ์ฒซ์งธ๋Š” ๊ฑฐ์ฒ˜(ๅฑ…่™•)์ด๊ณ  ๋‘˜์งธ๋Š” ๋‹น์—ฌ(้ปจ่ˆ‡)์ด๊ณ  ์…‹์งธ๋Š” ๊ต์šฐ(ไบค้‡)์ด
    ๊ณ  ๋„ท์งธ๋Š” ์‚ฌ๋ฌด(ไบ‹ๅ‹™)์ด๋‹ค.
    [1-3] ๊ท€๋กœ ์ฒœ์‹œ๋ฅผ ๋“ค์œผ๋ฉฐ ๋ˆˆ์œผ๋กœ ์„ธํšŒ๋ฅผ ๋ณด๋ฉฐ ์ฝ”๋กœ ์ธ๋ฅœ์„ ๋ƒ„์ƒˆ ๋งก๊ณ  ์ž…์œผ๋กœ ์ง€๋ฐฉ์„ ๋ง›๋ณธ๋‹ค.
    [1-4] ์ฒœ์‹œ๋Š” ์ง€๊ทนํžˆ ํƒ•(่•ฉ)ํ•œ ๊ฒƒ์ด๊ณ  ์„ธํšŒ๋Š” ๊ทนํžˆ ํฐ ๊ฒƒ์ด๊ณ  ์ธ๋ฅœ์€ ๊ทนํžˆ ๋„“์€ ๊ฒƒ์ด๊ณ  ์ง€๋ฐฉ์€ ๊ทนํžˆ
    ๋จผ ๊ฒƒ์ด๋‹ค.
    [1-5] ํ๋Š” ์‚ฌ๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ๋น„๋Š” ๊ต์šฐ๋ฅผ ๋งบ๊ฒŒ ํ•˜๋ฉฐ ๊ฐ„์€ ๋‹น์—ฌ๋ฅผ ํ˜•์„ฑํ•˜๋ฉฐ ์‹ ์€ ๊ฑฐ์ฒ˜๋ฅผ ์ •ํ•œ๋‹ค.
    [1-6] ์‚ฌ๋ฌด๋Š” ์ž˜ ๋‹ฆ์—ฌ์ ธ์•ผ ํ•˜๊ณ  ๊ต์šฐ๋Š” ์ž˜ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•˜๊ณ  ๋‹น์—ฌ๋Š” ์ž˜ ์ •๋ˆ๋˜์–ด์•ผ ํ•˜๊ณ , ๊ฑฐ์ฒ˜๋Š” ์ž˜
    ๋‹ค์Šค๋ ค์ ธ์•ผ ํ•œ๋‹ค.
    [1-7] ํ„ฑ์—๋Š” ์ฃผ์ฑ…(็ฑŒ็ญ–)์ด ์žˆ๊ณ  ๊ฐ€์Šด์—๋Š” ๊ฒฝ๋ฅœ(็ถ“็ถธ)์ด ์žˆ๊ณ  ๋ฐฐ๊ผฝ์—๋Š” ํ–‰๊ฒ€(่กŒๆชข)์ด ์žˆ๊ณ  ๋ฐฐ์—๋Š” ๋„
    ๋Ÿ‰(ๅบฆ้‡)์ด ์žˆ๋‹ค.
    [1-8] ์ฃผ์ฑ…์€ ๊ต๋งŒํ•˜์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๊ณ  ๊ฒฝ๋ฅœ์€ ๋ป๊ธฐ์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๊ณ  ํ–‰๊ฒ€์€ ํ•จ๋ถ€๋กœ ํ•˜์ง€ ๋ง์•„
    ์•ผ ํ•  ๊ฒƒ์ด๊ณ  ๋„๋Ÿ‰์€ ๊ณผ์žฅํ•˜์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๋‹ค.
    [1-9] ๋จธ๋ฆฌ์—๋Š” ์‹๊ฒฌ(่ญ˜่ฆ‹)์ด ์žˆ๊ณ  ์–ด๊นจ์—๋Š” ์œ„์˜(ๅจๅ„€)๊ฐ€ ์žˆ๊ณ  ํ—ˆ๋ฆฌ์—๋Š” ์žฌ๊ฐ„(ๆๅนน)์ด ์žˆ๊ณ  ์—‰๋ฉ์ด
    ์—๋Š” ๋ฐฉ๋žต(ๆ–น็•ฅ)์ด ์žˆ๋‹ค.
    ์†Œ์Œ์ธ ์—ฌ์„ฑ์ด ๋ณ‘์›์— ์™”๋‹ค. ๋ฐฐ๊ฐ€ ์•„ํ”„๊ณ  ์„ค์‚ฌ๋ฅผ ํ•˜๋‹ค๊ฐ€ ๋ฉฐ์น  ํ›„์— ๊ฐ‘์ž๊ธฐ ์˜์‹์„ ์žƒ๊ณ  ๋„˜์–ด์ง€๋ฉฐ, ์†๋ฐœ์ด ์‹œ๋ฆฌ๊ณ  ์—ด์ด ๋‚˜๋ฉด์„œ ๋•€์ด ๋‚ฌ๋‹ค. ์น˜๋ฐฉ์€? [1-1] ์ฒœ๊ธฐ(ๅคฉๆฉŸ)์— ๋„ท์ด ์žˆ๋Š”๋ฐ ์ฒซ์งธ๋Š” ์ง€๋ฐฉ(ๅœฐๆ–น)์ด๊ณ  ๋‘˜์งธ๋Š” ์ธ๋ฅœ(ไบบๅ€ซ)์ด๊ณ  ์…‹์งธ๋Š” ์„ธํšŒ(ไธ–ๆœƒ)์ด
    ๊ณ  ๋„ท์งธ๋Š” ์ฒœ์‹œ(ๅคฉๆ™‚)์ด๋‹ค.
    [1-2] ์ธ์‚ฌ(ไบบไบ‹)์— ๋„ท์ด ์žˆ๋Š”๋ฐ ์ฒซ์งธ๋Š” ๊ฑฐ์ฒ˜(ๅฑ…่™•)์ด๊ณ  ๋‘˜์งธ๋Š” ๋‹น์—ฌ(้ปจ่ˆ‡)์ด๊ณ  ์…‹์งธ๋Š” ๊ต์šฐ(ไบค้‡)์ด
    ๊ณ  ๋„ท์งธ๋Š” ์‚ฌ๋ฌด(ไบ‹ๅ‹™)์ด๋‹ค.
    [1-3] ๊ท€๋กœ ์ฒœ์‹œ๋ฅผ ๋“ค์œผ๋ฉฐ ๋ˆˆ์œผ๋กœ ์„ธํšŒ๋ฅผ ๋ณด๋ฉฐ ์ฝ”๋กœ ์ธ๋ฅœ์„ ๋ƒ„์ƒˆ ๋งก๊ณ  ์ž…์œผ๋กœ ์ง€๋ฐฉ์„ ๋ง›๋ณธ๋‹ค.
    [1-4] ์ฒœ์‹œ๋Š” ์ง€๊ทนํžˆ ํƒ•(่•ฉ)ํ•œ ๊ฒƒ์ด๊ณ  ์„ธํšŒ๋Š” ๊ทนํžˆ ํฐ ๊ฒƒ์ด๊ณ  ์ธ๋ฅœ์€ ๊ทนํžˆ ๋„“์€ ๊ฒƒ์ด๊ณ  ์ง€๋ฐฉ์€ ๊ทนํžˆ
    ๋จผ ๊ฒƒ์ด๋‹ค.
    [1-5] ํ๋Š” ์‚ฌ๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ๋น„๋Š” ๊ต์šฐ๋ฅผ ๋งบ๊ฒŒ ํ•˜๋ฉฐ ๊ฐ„์€ ๋‹น์—ฌ๋ฅผ ํ˜•์„ฑํ•˜๋ฉฐ ์‹ ์€ ๊ฑฐ์ฒ˜๋ฅผ ์ •ํ•œ๋‹ค.
    [1-6] ์‚ฌ๋ฌด๋Š” ์ž˜ ๋‹ฆ์—ฌ์ ธ์•ผ ํ•˜๊ณ  ๊ต์šฐ๋Š” ์ž˜ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•˜๊ณ  ๋‹น์—ฌ๋Š” ์ž˜ ์ •๋ˆ๋˜์–ด์•ผ ํ•˜๊ณ , ๊ฑฐ์ฒ˜๋Š” ์ž˜
    ๋‹ค์Šค๋ ค์ ธ์•ผ ํ•œ๋‹ค.
    [1-7] ํ„ฑ์—๋Š” ์ฃผ์ฑ…(็ฑŒ็ญ–)์ด ์žˆ๊ณ  ๊ฐ€์Šด์—๋Š” ๊ฒฝ๋ฅœ(็ถ“็ถธ)์ด ์žˆ๊ณ  ๋ฐฐ๊ผฝ์—๋Š” ํ–‰๊ฒ€(่กŒๆชข)์ด ์žˆ๊ณ  ๋ฐฐ์—๋Š” ๋„
    ๋Ÿ‰(ๅบฆ้‡)์ด ์žˆ๋‹ค.
    [1-8] ์ฃผ์ฑ…์€ ๊ต๋งŒํ•˜์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๊ณ  ๊ฒฝ๋ฅœ์€ ๋ป๊ธฐ์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๊ณ  ํ–‰๊ฒ€์€ ํ•จ๋ถ€๋กœ ํ•˜์ง€ ๋ง์•„
    ์•ผ ํ•  ๊ฒƒ์ด๊ณ  ๋„๋Ÿ‰์€ ๊ณผ์žฅํ•˜์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๋‹ค.
    [1-9] ๋จธ๋ฆฌ์—๋Š” ์‹๊ฒฌ(่ญ˜่ฆ‹)์ด ์žˆ๊ณ  ์–ด๊นจ์—๋Š” ์œ„์˜(ๅจๅ„€)๊ฐ€ ์žˆ๊ณ  ํ—ˆ๋ฆฌ์—๋Š” ์žฌ๊ฐ„(ๆๅนน)์ด ์žˆ๊ณ  ์—‰๋ฉ์ด
    ์—๋Š” ๋ฐฉ๋žต(ๆ–น็•ฅ)์ด ์žˆ๋‹ค.
    ๋‚˜์•„๊ฐ€๋ ค๊ณ ๋งŒ ํ•˜๊ณ  ๋ฌผ๋Ÿฌ๋‚˜๋ ค ํ•˜์ง€ ์•Š๋Š” ์ฒด์งˆ์€? [1-1] ์ฒœ๊ธฐ(ๅคฉๆฉŸ)์— ๋„ท์ด ์žˆ๋Š”๋ฐ ์ฒซ์งธ๋Š” ์ง€๋ฐฉ(ๅœฐๆ–น)์ด๊ณ  ๋‘˜์งธ๋Š” ์ธ๋ฅœ(ไบบๅ€ซ)์ด๊ณ  ์…‹์งธ๋Š” ์„ธํšŒ(ไธ–ๆœƒ)์ด
    ๊ณ  ๋„ท์งธ๋Š” ์ฒœ์‹œ(ๅคฉๆ™‚)์ด๋‹ค.
    [1-2] ์ธ์‚ฌ(ไบบไบ‹)์— ๋„ท์ด ์žˆ๋Š”๋ฐ ์ฒซ์งธ๋Š” ๊ฑฐ์ฒ˜(ๅฑ…่™•)์ด๊ณ  ๋‘˜์งธ๋Š” ๋‹น์—ฌ(้ปจ่ˆ‡)์ด๊ณ  ์…‹์งธ๋Š” ๊ต์šฐ(ไบค้‡)์ด
    ๊ณ  ๋„ท์งธ๋Š” ์‚ฌ๋ฌด(ไบ‹ๅ‹™)์ด๋‹ค.
    [1-3] ๊ท€๋กœ ์ฒœ์‹œ๋ฅผ ๋“ค์œผ๋ฉฐ ๋ˆˆ์œผ๋กœ ์„ธํšŒ๋ฅผ ๋ณด๋ฉฐ ์ฝ”๋กœ ์ธ๋ฅœ์„ ๋ƒ„์ƒˆ ๋งก๊ณ  ์ž…์œผ๋กœ ์ง€๋ฐฉ์„ ๋ง›๋ณธ๋‹ค.
    [1-4] ์ฒœ์‹œ๋Š” ์ง€๊ทนํžˆ ํƒ•(่•ฉ)ํ•œ ๊ฒƒ์ด๊ณ  ์„ธํšŒ๋Š” ๊ทนํžˆ ํฐ ๊ฒƒ์ด๊ณ  ์ธ๋ฅœ์€ ๊ทนํžˆ ๋„“์€ ๊ฒƒ์ด๊ณ  ์ง€๋ฐฉ์€ ๊ทนํžˆ
    ๋จผ ๊ฒƒ์ด๋‹ค.
    [1-5] ํ๋Š” ์‚ฌ๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ๋น„๋Š” ๊ต์šฐ๋ฅผ ๋งบ๊ฒŒ ํ•˜๋ฉฐ ๊ฐ„์€ ๋‹น์—ฌ๋ฅผ ํ˜•์„ฑํ•˜๋ฉฐ ์‹ ์€ ๊ฑฐ์ฒ˜๋ฅผ ์ •ํ•œ๋‹ค.
    [1-6] ์‚ฌ๋ฌด๋Š” ์ž˜ ๋‹ฆ์—ฌ์ ธ์•ผ ํ•˜๊ณ  ๊ต์šฐ๋Š” ์ž˜ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•˜๊ณ  ๋‹น์—ฌ๋Š” ์ž˜ ์ •๋ˆ๋˜์–ด์•ผ ํ•˜๊ณ , ๊ฑฐ์ฒ˜๋Š” ์ž˜
    ๋‹ค์Šค๋ ค์ ธ์•ผ ํ•œ๋‹ค.
    [1-7] ํ„ฑ์—๋Š” ์ฃผ์ฑ…(็ฑŒ็ญ–)์ด ์žˆ๊ณ  ๊ฐ€์Šด์—๋Š” ๊ฒฝ๋ฅœ(็ถ“็ถธ)์ด ์žˆ๊ณ  ๋ฐฐ๊ผฝ์—๋Š” ํ–‰๊ฒ€(่กŒๆชข)์ด ์žˆ๊ณ  ๋ฐฐ์—๋Š” ๋„
    ๋Ÿ‰(ๅบฆ้‡)์ด ์žˆ๋‹ค.
    [1-8] ์ฃผ์ฑ…์€ ๊ต๋งŒํ•˜์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๊ณ  ๊ฒฝ๋ฅœ์€ ๋ป๊ธฐ์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๊ณ  ํ–‰๊ฒ€์€ ํ•จ๋ถ€๋กœ ํ•˜์ง€ ๋ง์•„
    ์•ผ ํ•  ๊ฒƒ์ด๊ณ  ๋„๋Ÿ‰์€ ๊ณผ์žฅํ•˜์ง€ ๋ง์•„์•ผ ํ•  ๊ฒƒ์ด๋‹ค.
    [1-9] ๋จธ๋ฆฌ์—๋Š” ์‹๊ฒฌ(่ญ˜่ฆ‹)์ด ์žˆ๊ณ  ์–ด๊นจ์—๋Š” ์œ„์˜(ๅจๅ„€)๊ฐ€ ์žˆ๊ณ  ํ—ˆ๋ฆฌ์—๋Š” ์žฌ๊ฐ„(ๆๅนน)์ด ์žˆ๊ณ  ์—‰๋ฉ์ด
    ์—๋Š” ๋ฐฉ๋žต(ๆ–น็•ฅ)์ด ์žˆ๋‹ค.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 5
  • per_device_eval_batch_size: 5
  • num_train_epochs: 2
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 5
  • per_device_eval_batch_size: 5
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 1 0.7818

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
5
Safetensors
Model size
568M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for micky1625/finetuned2

Base model

BAAI/bge-m3
Finetuned
(294)
this model

Evaluation results