camembert-bank-post-classifier
It classifies posts on an internal social media in 7 categories :
- Annonce RH & Vie de l'Entreprise
- Communication de la Direction & Stratégie
- Formation & Développement
- Information & Alerte Pratique
- Projet, Produit & Innovation
- RSE & Engagement Citoyen
- Événement Externe & Partenariat
Model description
This model is a fine-tuned version of camembert-base on an unknown dataset.
Intended uses & limitations
Classifying posts under 7 categories.
Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.5783
- Accuracy: 0.8682
- F1: 0.8663
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.557 | 1.0 | 124 | 1.2381 | 0.7181 | 0.6649 |
1.0415 | 2.0 | 248 | 0.8830 | 0.8316 | 0.8254 |
0.6258 | 3.0 | 372 | 0.6725 | 0.8560 | 0.8523 |
0.4723 | 4.0 | 496 | 0.6103 | 0.8540 | 0.8516 |
0.3092 | 5.0 | 620 | 0.5921 | 0.8600 | 0.8583 |
0.2244 | 6.0 | 744 | 0.5722 | 0.8641 | 0.8624 |
0.1482 | 7.0 | 868 | 0.5719 | 0.8641 | 0.8626 |
0.1493 | 8.0 | 992 | 0.5783 | 0.8682 | 0.8663 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 40
Model tree for miguelonana/camembert-bank-post-classifier
Base model
almanach/camembert-base