Indo β Bima Translator π
Model penerjemahan Bahasa Indonesia ke Bahasa Bima lokal hasil fine-tuning dengan 1.084 pasangan kalimat paralel. Cocok untuk kalimat sederhana sehari-hari.
π Ringkasan Model
Item | Detail |
---|---|
Model name | indo-bima-translator |
Base model | Helsinki-NLP/opus-mt-id-en |
Dataset model | dataset.csv |
Dataset size | 1.084 pasangan kata + kalimat |
Split train/test | ~976 latih / ~108 uji |
Epoch | 10 |
Learning rate | 5β―Γβ―10β»β΅ |
Batch size | 4 |
π Performa Model
Grafik Training Loss

Grafik Train

Grafik Evaluasi

Grafik Pemakaian GPU

Evaluasi BLEU
- BLEU original (BLEUβ4): 1.0000
- BLEU (NLTK smoothed): ~0.64
- Precision 1βgram: 100%
- Precision bigram, trigram, 4βgram: 0% (karena kalimat pendek)
β οΈ BLEU utama bisa jadi tinggi karena kalimat test identik persis. BLEU dengan smoothing memberikan gambaran akurasi unigram yang lebih realistis.
π¬ Contoh Terjemahan (Test Set)
Indonesia | Output Model | Referensi Bima |
---|---|---|
apa kabar? | Bune Haba? | Bune Haba? |
saya makan | nahu ngaha | nahu ngaha |
dimana kamu tinggal? | tabe ncau ngge'e mu? | tabe ncau ngge'e mu? |
π Cara Menggunakan
from transformers import MarianMTModel, MarianTokenizer
model = MarianMTModel.from_pretrained("mikasamkz21/indo-bima-translator")
tokenizer = MarianTokenizer.from_pretrained("mikasamkz21/indo-bima-translator")
inputs = tokenizer("apa kabar?", return_tensors="pt", truncation=True, padding=True)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
CITATION
@misc{indo_bima_translator_2025, title={Indo β Bima Translator}, author={HazelDev}, year={2025}, howpublished={\url{https://huggingface.co/mikasamkz21/indo-bima-translator}}, }
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for mikasamkz21/indo-bima-translator
Base model
Helsinki-NLP/opus-mt-id-en