Comparison Table of Test Results by Model (BFCL)
Test Item | base Model Score | tool Model Score | Score Difference (tool - base) |
---|---|---|---|
irrelevance | 0.4333 | 0.8708 | +0.4375 |
multi_turn_base | 0.0100 | 0.0400 | +0.0300 |
parallel_multiple | 0.4750 | 0.7550 | +0.2800 |
parallel | 0.5200 | 0.7600 | +0.2400 |
simple | 0.7575 | 0.7975 | +0.0400 |
multiple | 0.7650 | 0.8050 | +0.0400 |
See axolotl config
axolotl version: 0.10.0.dev0
base_model: minpeter/HCX-SEED-FC-3B
hub_model_id: minpeter/LoRA-HCX-3b-sf-xlam-00
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: minpeter/xlam-function-calling-60k-hermes
data_files:
- result.parquet
type: chat_template
roles_to_train: ["assistant"]
field_messages: conversations
message_property_mappings:
role: from
content: value
shards: 120
- path: minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes
data_files:
- result.parquet
type: chat_template
roles_to_train: ["assistant"]
field_messages: conversations
message_property_mappings:
role: from
content: value
shards: 15
- path: minpeter/hermes-function-calling-v1-jsonl
data_files:
- func-calling-singleturn.jsonl
- func-calling.jsonl
type: chat_template
roles_to_train: ["assistant"]
field_messages: conversations
message_property_mappings:
role: from
content: value
shards: 3
- path: minpeter/hermes-function-calling-v1-jsonl
data_files:
- glaive-function-calling-5k.jsonl
type: chat_template
roles_to_train: ["assistant"]
field_messages: conversations
message_property_mappings:
role: from
content: value
shards: 5
chat_template: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./output
adapter: lora
lora_model_dir:
sequence_len: 20000
pad_to_sequence_len: true
sample_packing: true
val_set_size: 0.05
eval_sample_packing: true
evals_per_epoch: 3
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|im_start|>"
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
LoRA-HCX-3b-sf-xlam-00
This model is a fine-tuned version of minpeter/HCX-SEED-FC-3B on the minpeter/xlam-function-calling-60k-hermes, the minpeter/xlam-irrelevance-7.5k-qwen2.5-72b-distill-hermes, the minpeter/hermes-function-calling-v1-jsonl and the minpeter/hermes-function-calling-v1-jsonl datasets. It achieves the following results on the evaluation set:
- Loss: 0.3603
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8224 | 0.0215 | 1 | 0.7483 |
0.4965 | 0.3441 | 16 | 0.4406 |
0.5057 | 0.6882 | 32 | 0.3911 |
0.4464 | 1.0215 | 48 | 0.3737 |
0.4376 | 1.3656 | 64 | 0.3651 |
0.3833 | 1.7097 | 80 | 0.3603 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for minpeter/LoRA-HCX-3b-sf-xlam-00
Finetuned
minpeter/HCX-SEED-FC-3B