See axolotl config
axolotl version: 0.6.0
base_model: meta-llama/Llama-3.2-1B
# Automatically upload checkpoint and final model to HF
hub_model_id: minpeter/LoRA-Llama-3.2-1B-Alpaca
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: alpaca
datasets:
- path: minpeter/stanford-alpaca-regen-llama-3.3
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./output
adapter: lora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
LoRA-Llama-3.2-1B-Alpaca
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the minpeter/stanford-alpaca-regen-llama-3.3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2509
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.711 | 0.0021 | 1 | 1.6925 |
1.353 | 0.2516 | 121 | 1.3002 |
1.145 | 0.5031 | 242 | 1.2688 |
1.3371 | 0.7547 | 363 | 1.2509 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for minpeter/LoRA-Llama-3.2-1B-Alpaca
Base model
meta-llama/Llama-3.2-1B