minpeter commited on
Commit
de5d967
·
verified ·
1 Parent(s): b3122f4

End of training

Browse files
Files changed (1) hide show
  1. README.md +156 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.2
4
+ base_model: meta-llama/Llama-3.2-1B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - minpeter/stanford-alpaca-regen-llama-3.3
10
+ model-index:
11
+ - name: LoRA-Llama-3.2-1B-Alpaca
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ base_model: meta-llama/Llama-3.2-1B
24
+ # Automatically upload checkpoint and final model to HF
25
+ hub_model_id: minpeter/LoRA-Llama-3.2-1B-Alpaca
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ chat_template: alpaca
32
+
33
+ datasets:
34
+ - path: minpeter/stanford-alpaca-regen-llama-3.3
35
+ type: alpaca
36
+ dataset_prepared_path: last_run_prepared
37
+ val_set_size: 0.1
38
+ output_dir: ./output
39
+
40
+ adapter: lora
41
+ lora_model_dir:
42
+
43
+ sequence_len: 2048
44
+ sample_packing: true
45
+ eval_sample_packing: true
46
+ pad_to_sequence_len: true
47
+
48
+ lora_r: 16
49
+ lora_alpha: 32
50
+ lora_dropout: 0.05
51
+ lora_fan_in_fan_out:
52
+ lora_target_modules:
53
+ - gate_proj
54
+ - down_proj
55
+ - up_proj
56
+ - q_proj
57
+ - v_proj
58
+ - k_proj
59
+ - o_proj
60
+
61
+ wandb_project: "axolotl"
62
+ wandb_entity: "kasfiekfs-e"
63
+ wandb_watch:
64
+ wandb_name:
65
+ wandb_log_model:
66
+
67
+ gradient_accumulation_steps: 2
68
+ micro_batch_size: 2
69
+ num_epochs: 1
70
+ optimizer: adamw_8bit
71
+ lr_scheduler: cosine
72
+ learning_rate: 0.0002
73
+
74
+ train_on_inputs: false
75
+ group_by_length: false
76
+ bf16: auto
77
+ fp16:
78
+ tf32: false
79
+
80
+ gradient_checkpointing: true
81
+ early_stopping_patience:
82
+ resume_from_checkpoint:
83
+ local_rank:
84
+ logging_steps: 1
85
+ xformers_attention:
86
+ flash_attention: true
87
+
88
+ loss_watchdog_threshold: 5.0
89
+ loss_watchdog_patience: 3
90
+
91
+ warmup_steps: 10
92
+ evals_per_epoch: 4
93
+ saves_per_epoch: 1
94
+ debug:
95
+ deepspeed:
96
+ weight_decay: 0.0
97
+ fsdp:
98
+ fsdp_config:
99
+ special_tokens:
100
+ pad_token: "<|end_of_text|>"
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # LoRA-Llama-3.2-1B-Alpaca
107
+
108
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the minpeter/stanford-alpaca-regen-llama-3.3 dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 1.2509
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0002
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - gradient_accumulation_steps: 2
134
+ - total_train_batch_size: 4
135
+ - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 10
138
+ - num_epochs: 1.0
139
+
140
+ ### Training results
141
+
142
+ | Training Loss | Epoch | Step | Validation Loss |
143
+ |:-------------:|:------:|:----:|:---------------:|
144
+ | 1.711 | 0.0021 | 1 | 1.6925 |
145
+ | 1.353 | 0.2516 | 121 | 1.3002 |
146
+ | 1.145 | 0.5031 | 242 | 1.2688 |
147
+ | 1.3371 | 0.7547 | 363 | 1.2509 |
148
+
149
+
150
+ ### Framework versions
151
+
152
+ - PEFT 0.14.0
153
+ - Transformers 4.48.3
154
+ - Pytorch 2.5.1+cu124
155
+ - Datasets 3.2.0
156
+ - Tokenizers 0.21.0