It's garbage, this learning settings are wrong.
docker run --rm --runtime nvidia --ipc=host --gpus 'all' \
-v /data/huggingface:/root/.cache/huggingface \
-v /data:/data \
-e "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p 4000:4000 \
vllm/vllm-openai:latest \
--model qwen/qwen3-4b \
--enforce-eager --port 4000 --served-model-name base \
--enable-auto-tool-choice --tool-call-parser hermes \
--enable-lora --max-lora-rank 128 --lora-modules tool=minpeter/LoRA-Qwen3-4b-v1-iteration-01-sf-apigen-00
Qwen3-4B BFCL GT (w/o thinking)
π Running test: irrelevance
β
Test completed: irrelevance. π― Accuracy: 0.875
π Running test: multi_turn_base
β
Test completed: multi_turn_base. π― Accuracy: 0.085
π Running test: parallel_multiple
β
Test completed: parallel_multiple. π― Accuracy: 0.89
π Running test: parallel
β
Test completed: parallel. π― Accuracy: 0.885
π Running test: simple
β
Test completed: simple. π― Accuracy: 0.9325
π Running test: multiple
β
Test completed: multiple. π― Accuracy: 0.92
See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-4B
hub_model_id: minpeter/LoRA-Qwen3-4b-v1-iteration-01-sf-apigen-00
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
# 0.5k
- path: minpeter/apigen-mt-5k-friendli
data_files:
- train.jsonl
- test.jsonl
type: chat_template
chat_template: qwen3
split_thinking: true
field_messages: messages
message_field_role: role
message_field_content: content
shards: 3
chat_template: qwen3
dataset_prepared_path: last_run_prepared
output_dir: ./output
adapter: lora
lora_model_dir:
sequence_len: 16384
pad_to_sequence_len: true
sample_packing: true
val_set_size: 0.05
eval_sample_packing: true
evals_per_epoch: 3
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
LoRA-Qwen3-4b-v1-iteration-01-sf-apigen-00
This model is a fine-tuned version of Qwen/Qwen3-4B on the minpeter/apigen-mt-5k-friendli dataset. It achieves the following results on the evaluation set:
- Loss: 0.1821
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.929 | 0.0045 | 1 | 0.8641 |
0.3071 | 0.3341 | 74 | 0.2398 |
0.1946 | 0.6682 | 148 | 0.2112 |
0.1311 | 1.0 | 222 | 0.1951 |
0.1204 | 1.3341 | 296 | 0.1865 |
0.1926 | 1.6682 | 370 | 0.1821 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support