See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-4B
hub_model_id: minpeter/LoRA-Qwen3-4b-v1-iteration-01-sf-apigen-01
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: minpeter/apigen-mt-5k-friendli
data_files:
- train.jsonl
- test.jsonl
type: chat_template
roles_to_train: ["assistant"]
field_messages: messages
message_property_mappings:
role: role
content: content
shards: 3
chat_template: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./output
adapter: lora
lora_model_dir:
sequence_len: 8192
pad_to_sequence_len: true
sample_packing: true
val_set_size: 0.05
eval_sample_packing: true
evals_per_epoch: 3
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
LoRA-Qwen3-4b-v1-iteration-01-sf-apigen-01
This model is a fine-tuned version of Qwen/Qwen3-4B on the minpeter/apigen-mt-5k-friendli dataset. It achieves the following results on the evaluation set:
- Loss: 0.2285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4432 | 0.0069 | 1 | 1.0528 |
0.3253 | 0.3322 | 48 | 0.2922 |
0.4198 | 0.6644 | 96 | 0.2638 |
0.4426 | 0.9965 | 144 | 0.2449 |
0.2287 | 1.3253 | 192 | 0.2340 |
0.1526 | 1.6574 | 240 | 0.2299 |
0.268 | 1.9896 | 288 | 0.2285 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support