asr2_medium_v0.8 / README.md
miosipof's picture
End of training
73ae9c6 verified
metadata
library_name: peft
language:
  - it
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - b-brave-clean
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: b-brave-clean
          type: b-brave-clean
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 40.97421203438395
            name: Wer

Whisper Medium

This model is a fine-tuned version of openai/whisper-medium on the b-brave-clean dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6343
  • Wer: 40.9742
  • Cer: 28.2112
  • Lr: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Lr
1.3936 1.0 251 1.2047 77.7937 48.2532 0.0001
0.8092 2.0 502 0.8939 161.6046 108.6945 0.0002
0.5533 3.0 753 0.8686 145.1289 117.0475 0.0003
0.3427 4.0 1004 0.6722 50.7163 34.9094 0.0002
0.1878 5.0 1255 0.6712 74.9284 63.9611 0.0002
0.1152 6.0 1506 0.6282 43.6963 29.8923 0.0001
0.0547 7.0 1757 0.6345 60.3152 53.7956 0.0001
0.0263 8.0 2008 0.6343 40.9742 28.2112 0.0000

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0