miosipof's picture
End of training
8c288ef verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
model-index:
  - name: miosipof/whisper-tiny-ft-balbus-sep28k-v1
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7508617988091507

miosipof/whisper-tiny-ft-balbus-sep28k-v1

This model is a fine-tuned version of openai/whisper-tiny on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5255
  • Accuracy: 0.7509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6685 0.5013 100 0.6430 0.6371
0.5858 1.0 200 0.5736 0.7068
0.5284 1.5013 300 0.5422 0.7333
0.5125 2.0 400 0.5359 0.7361
0.4163 2.5013 500 0.5517 0.7369
0.4113 3.0 600 0.5255 0.7509

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0