YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_baseline
Model Information
Full Model Name: idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_baseline
Repository Name: mlfoundations-cua-dev/uitars_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_baseline
Model Directory: idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_baseline
Checkpoint Used: idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_baseline/checkpoint_epoch_9.pt
Model Configuration
- Model Version: TARS 1.5
- Model Size: 7B parameters
- Data Type: Frame pairs
- Learning Rate: 1e-5
- Epochs: 10
- Training Steps: 500
- Global Batch Size: 8
- Weight Decay: 0.1
- Max Gradient Norm: 1.0
- Resolution: 896x896
- Training Data: Baseline
Description
This repository contains the model state dict extracted from the training checkpoint.
Files
model_state_dict.pt
: PyTorch state dictionary containing the model weightsREADME.md
: This file
Usage
import torch
# Load the model state dict
state_dict = torch.load("model_state_dict.pt", map_location='cpu')
# Use with your model architecture
# model.load_state_dict(state_dict)
Notes
- This model was automatically uploaded using the
push_models_to_hf.py
script - The repository name may be truncated if the original model name exceeded HuggingFace's 96-character limit
- Checkpoint extracted from:
checkpoint_epoch_9.pt
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support