metadata
license: apache-2.0
datasets:
- bigcode/the-stack
- bigcode/the-stack-v2
- bigcode/starcoderdata
- bigcode/commitpack
library_name: mlx
tags:
- code
- mlx
base_model: JetBrains/Mellum-4b-base
pipeline_tag: text-generation
model-index:
- name: Mellum-4b-base
results:
- task:
type: text-generation
dataset:
name: RepoBench 1.1 (Python)
type: tianyang/repobench_python_v1.1
metrics:
- type: exact_match
value: 0.2591
name: EM
verified: false
- type: exact_match
value: 0.2797
name: EM ≤ 8k
verified: false
- type: exact_match
value: 0.282
name: EM
verified: false
- type: exact_match
value: 0.2795
name: EM
verified: false
- type: exact_match
value: 0.2777
name: EM
verified: false
- type: exact_match
value: 0.2453
name: EM
verified: false
- type: exact_match
value: 0.211
name: EM
verified: false
- task:
type: text-generation
dataset:
name: RepoBench 1.1 (Java)
type: tianyang/repobench_java_v1.1
metrics:
- type: exact_match
value: 0.2858
name: EM
verified: false
- type: exact_match
value: 0.3108
name: EM ≤ 8k
verified: false
- type: exact_match
value: 0.3202
name: EM
verified: false
- type: exact_match
value: 0.3212
name: EM
verified: false
- type: exact_match
value: 0.291
name: EM
verified: false
- type: exact_match
value: 0.2492
name: EM
verified: false
- type: exact_match
value: 0.2474
name: EM
verified: false
- task:
type: text-generation
dataset:
name: SAFIM
type: gonglinyuan/safim
metrics:
- type: pass@1
value: 0.3811
name: pass@1
verified: false
- type: pass@1
value: 0.253
name: pass@1
verified: false
- type: pass@1
value: 0.3839
name: pass@1
verified: false
- type: pass@1
value: 0.5065
name: pass@1
verified: false
- task:
type: text-generation
dataset:
name: HumanEval Infilling (Single-Line)
type: loubnabnl/humaneval_infilling
metrics:
- type: pass@1
value: 0.6621
name: pass@1
verified: false
- type: pass@1
value: 0.3852
name: pass@1
verified: false
- type: pass@1
value: 0.2969
name: pass@1
verified: false
mlx-community/Mellum-4b-base-4bit
This model mlx-community/Mellum-4b-base-4bit was converted to MLX format from JetBrains/Mellum-4b-base using mlx-lm version 0.25.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Mellum-4b-base-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)