metadata
license: mit
datasets:
- internlm/SWE-Fixer-Eval
- internlm/SWE-Fixer-Train-110K
base_model: internlm/SWE-Fixer-Editor-72B
pipeline_tag: text-generation
tags:
- code
- mlx
mlx-community/SWE-Fixer-Editor-72B-4bit
The Model mlx-community/SWE-Fixer-Editor-72B-4bit was converted to MLX format from internlm/SWE-Fixer-Editor-72B using mlx-lm version 0.21.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/SWE-Fixer-Editor-72B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)