|
--- |
|
license: gemma |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- mlx |
|
extra_gated_heading: Access EmbeddingGemma on Hugging Face |
|
extra_gated_prompt: To access EmbeddingGemma on Hugging Face, you’re required to review |
|
and agree to Google’s usage license. To do this, please ensure you’re logged in |
|
to Hugging Face and click below. Requests are processed immediately. |
|
extra_gated_button_content: Acknowledge license |
|
--- |
|
|
|
# mlx-community/embeddinggemma-300m-8bit |
|
|
|
The Model [mlx-community/embeddinggemma-300m-8bit](https://huggingface.co/mlx-community/embeddinggemma-300m-8bit) was converted to MLX format from [google/embeddinggemma-300m-qat-q8_0-unquantized](https://huggingface.co/google/embeddinggemma-300m-qat-q8_0-unquantized) using mlx-lm version **0.0.4**. |
|
|
|
## Use with mlx |
|
|
|
```bash |
|
pip install mlx-embeddings |
|
``` |
|
|
|
```python |
|
from mlx_embeddings import load, generate |
|
import mlx.core as mx |
|
|
|
model, tokenizer = load("mlx-community/embeddinggemma-300m-8bit") |
|
|
|
|
|
# For text embedding |
|
sentences = [ |
|
"task: sentence similarity | query: Nothing really matters.", |
|
"task: sentence similarity | query: The dog is barking.", |
|
"task: sentence similarity | query: The dog is barking.", |
|
] |
|
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='mlx') |
|
|
|
# Compute token embeddings |
|
input_ids = encoded_input['input_ids'] |
|
attention_mask = encoded_input['attention_mask'] |
|
output = model(input_ids, attention_mask) |
|
|
|
embeddings = output.text_embeds # Normalized embeddings |
|
|
|
# Compute dot product between normalized embeddings |
|
similarity_matrix = mx.matmul(embeddings, embeddings.T) |
|
|
|
print("Similarity matrix between texts:") |
|
print(similarity_matrix) |
|
|
|
|
|
# You can use these task-specific prefixes for different tasks |
|
task_prefixes = { |
|
"BitextMining": "task: search result | query: ", |
|
"Clustering": "task: clustering | query: ", |
|
"Classification": "task: classification | query: ", |
|
"MultilabelClassification": "task: classification | query: ", |
|
"PairClassification": "task: sentence similarity | query: ", |
|
"InstructionRetrieval": "task: code retrieval | query: ", |
|
"Reranking": "task: search result | query: ", |
|
"Retrieval": "task: search result | query: ", |
|
"Retrieval-query": "task: search result | query: ", |
|
"Retrieval-document": "title: none | text: ", |
|
"STS": "task: sentence similarity | query: ", |
|
"Summarization": "task: summarization | query: ", |
|
"document": "title: none | text: " |
|
} |
|
|
|
|
|
``` |
|
|