roberta-finetuned-WebClassification-v2-smalllinguaEN

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5844
  • Accuracy: 0.7143
  • F1: 0.7143
  • Precision: 0.7143
  • Recall: 0.7143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 7 2.3084 0.0714 0.0714 0.0714 0.0714
No log 2.0 14 2.2951 0.2857 0.2857 0.2857 0.2857
No log 3.0 21 2.2725 0.2143 0.2143 0.2143 0.2143
No log 4.0 28 2.0608 0.2143 0.2143 0.2143 0.2143
No log 5.0 35 1.8552 0.3571 0.3571 0.3571 0.3571
No log 6.0 42 1.6846 0.5714 0.5714 0.5714 0.5714
No log 7.0 49 1.5844 0.7143 0.7143 0.7143 0.7143
No log 8.0 56 1.4531 0.7143 0.7143 0.7143 0.7143
No log 9.0 63 1.3746 0.7143 0.7143 0.7143 0.7143
No log 10.0 70 1.3663 0.7143 0.7143 0.7143 0.7143

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cpu
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
14
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support