María Navas Loro
update model card README.md
35421e1
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-finetuned-WebClassification-v2-smalllinguaES
    results: []

roberta-finetuned-WebClassification-v2-smalllinguaES

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2410
  • Accuracy: 0.6471
  • F1: 0.6471
  • Precision: 0.6471
  • Recall: 0.6471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 9 2.3023 0.0588 0.0588 0.0588 0.0588
No log 2.0 18 2.0337 0.2353 0.2353 0.2353 0.2353
No log 3.0 27 1.8946 0.4706 0.4706 0.4706 0.4706
No log 4.0 36 1.7548 0.5882 0.5882 0.5882 0.5882
No log 5.0 45 1.6002 0.5294 0.5294 0.5294 0.5294
No log 6.0 54 1.4561 0.5294 0.5294 0.5294 0.5294
No log 7.0 63 1.3614 0.5294 0.5294 0.5294 0.5294
No log 8.0 72 1.2781 0.5882 0.5882 0.5882 0.5882
No log 9.0 81 1.2420 0.5882 0.5882 0.5882 0.5882
No log 10.0 90 1.2410 0.6471 0.6471 0.6471 0.6471

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cpu
  • Datasets 2.10.1
  • Tokenizers 0.13.2