|
from transformers import Starcoder2Model |
|
import sys |
|
from .config import ModularStarEncoderConfig |
|
import os |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union, List |
|
import sys |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
logging, |
|
|
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class StarEncoder2PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ModularStarEncoderConfig |
|
base_model_prefix = "ModularStarEncoder" |
|
model_type = "ModularStarEncoder" |
|
supports_gradient_checkpointing = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
class StarEncoder2Pooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
last_token_tensor = hidden_states[:, -1] |
|
pooled_output = self.dense(last_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
@dataclass |
|
class ModularStarEncoderOutput(ModelOutput): |
|
""" |
|
Output type of [`BertForPreTraining`]. |
|
|
|
Args: |
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Total loss as the sum of the masked language modeling loss and the next sequence prediction |
|
(classification) loss. |
|
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): |
|
Prediction scores of the in context classification (classification) head (scores of True/False continuation |
|
before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
projected_pooled_normalized: Optional[List[torch.FloatTensor]] = None |
|
raw_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, sequence_output, pooled_output,idx_layer: Optional[torch.Tensor] = None): |
|
if self.is_matryoshka: |
|
device_sequence = sequence_output.get_device() |
|
if device_sequence<0: |
|
device_sequence = "cpu" |
|
prediction_scores = self.predictions(torch.cat([sequence_output , self.conditional_embeddings(torch.tensor(idx_layer,device=device_sequence).int()).expand(sequence_output.size()[0],sequence_output.size()[1],-1)],dim=-1)) |
|
seq_relationship_score = self.seq_relationship(torch.cat([pooled_output , self.conditional_embeddings(torch.tensor(idx_layer,device=device_sequence).int()).expand(pooled_output.size()[0],-1)],dim=-1)) |
|
else: |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
def normalize(my_tensor): |
|
embedding_norms = my_tensor.norm(dim=0) |
|
|
|
normalizing_factor = torch.where( |
|
embedding_norms > 1.0, embedding_norms, torch.tensor(1) |
|
) |
|
|
|
normalized_tensor = my_tensor / normalizing_factor |
|
return normalized_tensor |
|
def pooling(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: |
|
"""Pools a batch of vector sequences into a batch of vector global representations. |
|
It does so by taking the average representation of the sequence, as indicated by the mask. |
|
|
|
Args: |
|
x (torch.Tensor): Batch of vector sequences with shape [B, T, F]. |
|
mask (torch.Tensor): Batch of masks with shape [B, T]. |
|
|
|
Returns: |
|
torch.Tensor: Pooled version of the input batch with shape [B, F]. |
|
""" |
|
|
|
|
|
mask_expanded = mask.unsqueeze(-1) |
|
|
|
|
|
masked_x = x * mask_expanded |
|
|
|
sum_x = masked_x.sum(dim=1) |
|
|
|
valid_lengths = mask.sum(dim=1).clamp(min=1).unsqueeze(-1) |
|
|
|
pooled_x = sum_x / valid_lengths |
|
|
|
return pooled_x |
|
|
|
def pool_and_normalize( |
|
features_sequence: torch.Tensor, |
|
attention_masks: torch.Tensor, |
|
return_norms: bool = False, |
|
) -> Union[torch.Tensor, List[torch.Tensor]]: |
|
"""Temporal ooling of sequences of vectors and projection onto the unit sphere. |
|
|
|
Args: |
|
features_sequence (torch.Tensor): Inpute features with shape [B, T, F]. |
|
attention_masks (torch.Tensor): Pooling masks with shape [B, T, F]. |
|
return_norms (bool, optional): Whether to additionally return the norms. Defaults to False. |
|
|
|
Returns: |
|
Union[torch.Tensor, List[torch.Tensor]]: Pooled and normalized vectors with shape [B, F]. |
|
""" |
|
|
|
pooled_embeddings = pooling(features_sequence, attention_masks) |
|
embedding_norms = pooled_embeddings.norm(dim=1) |
|
|
|
normalizing_factor = torch.where( |
|
embedding_norms > 1.0, embedding_norms, torch.ones_like(embedding_norms) |
|
) |
|
|
|
pooled_normalized_embeddings = pooled_embeddings / normalizing_factor[:, None] |
|
|
|
if return_norms: |
|
return pooled_normalized_embeddings, embedding_norms |
|
else: |
|
return pooled_normalized_embeddings |
|
|
|
def get_pooling_mask( |
|
input_ids: torch.Tensor, sep_token_id: Union[int, float] |
|
) -> torch.Tensor: |
|
"""Gets pooling masks. For a sequence of input tokens, the mask will be |
|
a sequence of zeros up until the first [SEP] occurrence, and 1 after that. |
|
|
|
Args: |
|
input_ids (torch.Tensor): Batch of input ids with shape [B, T]. |
|
sep_token_id (Union[int, float]): Id for [SEP] token. |
|
|
|
Returns: |
|
torch.Tensor: Batch of pooling masks with shape [B, T] |
|
""" |
|
|
|
idx = (input_ids == sep_token_id).float().flip(1).argmax(1) |
|
|
|
idx = input_ids.size(-1)-idx-1 |
|
|
|
repeated_idx = idx.unsqueeze(1).repeat(1, input_ids.size(1)) |
|
|
|
DEVICE = input_ids.get_device() |
|
|
|
if DEVICE<0: |
|
DEVICE = "cpu" |
|
ranges = torch.arange(input_ids.size(1)).repeat(input_ids.size(0), 1) |
|
ranges = ranges.to(DEVICE) |
|
|
|
pooling_mask = (repeated_idx <= ranges).long() |
|
|
|
return pooling_mask |
|
|
|
def adapt_model(model,config,till_layer:27): |
|
model = model.starEncoder2 |
|
|
|
encoder_config = config |
|
layers = encoder_config.matryoshka_layers |
|
feature_dim = encoder_config.hidden_size |
|
|
|
model.projection_heads = torch.nn.ModuleList() |
|
if till_layer: |
|
print(f"ATTENTION: till layer is on, you are pruning the model keeping just the first {till_layer} layers") |
|
model.layers = model.layers[:till_layer] |
|
model.projection_heads.append(torch.nn.Sequential( |
|
torch.nn.Linear(feature_dim, feature_dim), |
|
torch.nn.LeakyReLU(), |
|
torch.nn.Linear(feature_dim, feature_dim), |
|
)) |
|
else: |
|
for layer in layers: |
|
model.projection_heads.append(torch.nn.Sequential( |
|
torch.nn.Linear(feature_dim, feature_dim), |
|
torch.nn.LeakyReLU(), |
|
torch.nn.Linear(feature_dim, feature_dim), |
|
)) |
|
|
|
for layer in model.layers: |
|
layer.self_attn.is_causal=False |
|
|
|
model.temperature_coef = torch.nn.Parameter(torch.Tensor([10.0]),requires_grad=False) |
|
|
|
return model |
|
|
|
class ModularStarEncoder(StarEncoder2PreTrainedModel): |
|
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"] |
|
config_class = ModularStarEncoderConfig |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model_type = "ModularStarEncoder" |
|
for element in dir(config): |
|
value = getattr(config, element) |
|
if (isinstance(value, tuple) or isinstance(value, list)) and len(value)>0: |
|
setattr(config, element, value[0]) |
|
self.layer_matryoshka_loss = config.layer_matryoshka_loss |
|
self.matryoshka_layers = config.matryoshka_layers |
|
|
|
|
|
self.starEncoder2 = Starcoder2Model(config) |
|
|
|
|
|
|
|
for layer in self.starEncoder2.layers: |
|
layer.self_attn.is_causal=False |
|
|
|
self.post_init() |
|
self.till_layer= 18 |
|
self.starEncoder2 = adapt_model(self ,config=config,till_layer=self.till_layer) |
|
|
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
next_sentence_label: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
sep_token_id:Optional[int] = 49152, |
|
) -> Union[Tuple[torch.Tensor], ModularStarEncoderOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), |
|
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
This label is assigned to the in context loss: |
|
- 0 indicates sequence B belongs to the same repository of A, |
|
- 1 indicates sequence B is a random repository. |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
|
|
|
|
""" |
|
|
|
source_embedding = self.starEncoder2( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=True, |
|
) |
|
|
|
|
|
DEVICE = source_embedding.hidden_states[-1].get_device() |
|
if DEVICE<0: |
|
DEVICE = "cpu" |
|
|
|
try: |
|
projection_fn = self.starEncoder2.module.projection_heads |
|
temp_coef = self.starEncoder2.module.temperature_coef |
|
except AttributeError: |
|
projection_fn = self.starEncoder2.projection_heads |
|
temp_coef = self.starEncoder2.temperature_coef |
|
|
|
for head in projection_fn: |
|
head.to(DEVICE) |
|
temp_coef.to(DEVICE) |
|
|
|
|
|
|
|
|
|
pooling_mask_source_targtes = get_pooling_mask( |
|
input_ids, sep_token_id |
|
) |
|
|
|
if self.till_layer: |
|
self.matryoshka_layers=[self.till_layer] |
|
|
|
pooled_and_normalized = [] |
|
for idx,matr_layer in enumerate(self.matryoshka_layers): |
|
source_embedding_proj = projection_fn[idx](source_embedding.hidden_states[matr_layer]) |
|
|
|
normalized_source_embedding, embedding_norms = pool_and_normalize( |
|
source_embedding_proj, |
|
pooling_mask_source_targtes, |
|
return_norms=True, |
|
) |
|
|
|
pooled_and_normalized.append(normalized_source_embedding) |
|
|
|
if not self.till_layer: |
|
return ModularStarEncoderOutput( |
|
projected_pooled_normalized = pooled_and_normalized, |
|
raw_hidden_states=source_embedding.hidden_states, |
|
attentions=source_embedding.attentions, |
|
) |
|
else: |
|
return ModularStarEncoderOutput( |
|
projected_pooled_normalized = pooled_and_normalized[0], |
|
raw_hidden_states=source_embedding.hidden_states, |
|
attentions=source_embedding.attentions, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|