mohammed's picture
End of training
7af580d verified
|
raw
history blame
3.24 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small AR - Mohammed Bakheet
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 20.157687253613666

Whisper Small AR - Mohammed Bakheet

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2758
  • Wer: 20.1577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5507 0.2079 500 0.3695 29.2247
0.2802 0.4158 1000 0.3148 26.7299
0.2408 0.6236 1500 0.2970 24.2538
0.2208 0.8315 2000 0.2728 23.3020
0.1811 1.0394 2500 0.2665 22.3935
0.1096 1.2473 3000 0.2641 21.8998
0.1068 1.4552 3500 0.2568 21.6125
0.1042 1.6630 4000 0.2516 21.0512
0.1001 1.8709 4500 0.2472 20.4092
0.0827 2.0788 5000 0.2469 20.3848
0.0672 2.2869 5500 0.2665 21.1357
0.0673 2.4948 6000 0.2674 21.5093
0.0681 2.7026 6500 0.2635 20.6101
0.0661 2.9105 7000 0.2602 20.5069
0.0494 3.1184 7500 0.2708 20.5444
0.0352 3.3263 8000 0.2688 20.5181
0.0338 3.5341 8500 0.2717 20.2515
0.0318 3.7420 9000 0.2723 20.2403
0.0309 3.9499 9500 0.2711 20.1727
0.022 4.1578 10000 0.2758 20.1577

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3