zhouzaida
commited on
Commit
·
704b5c8
1
Parent(s):
e347507
upload
Browse files- .gitattributes +3 -0
- README.md +152 -3
- chat_template.jinja +31 -0
- config.json +74 -0
- configuration_kimi_vl.py +272 -0
- figures/arch.png +3 -0
- figures/demo.png +3 -0
- figures/instruct_perf.png +3 -0
- figures/logo.png +3 -0
- image_processing_kimi_vl.py +126 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_kimi_vl.py +0 -0
- preprocessor_config.json +20 -0
- processing_kimi_vl.py +170 -0
- tiktoken.model +3 -0
- tokenization_moonshot.py +309 -0
- tokenizer_config.json +134 -0
.gitattributes
CHANGED
@@ -33,4 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
36 |
figures/*.png filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
arch.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
instruct_perf.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
thinking_perf.png filter=lfs diff=lfs merge=lfs -text
|
39 |
figures/*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,152 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- moonshotai/Moonlight-16B-A3B
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
<div align="center">
|
11 |
+
<img width="30%" src="figures/logo.png">
|
12 |
+
</div>
|
13 |
+
|
14 |
+
|
15 |
+
## Introduction
|
16 |
+
|
17 |
+
We present **Kimi-VL**, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers **advanced multimodal reasoning, long-context understanding, and strong agent capabilities**—all while activating only **2.8B** parameters in its language decoder (Kimi-VL-A3B).
|
18 |
+
|
19 |
+
Kimi-VL demonstrates strong performance across challenging domains:
|
20 |
+
as a general-purpose VLM, Kimi-VL excels in multi-turn agent interaction tasks (e.g.,OSWorld), achieving state-of-the-art results comparable to flagship models.
|
21 |
+
Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, optical character recognition (OCR), mathematical reasoning, multi-image understanding, and etc.
|
22 |
+
|
23 |
+
In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several specialized domains.
|
24 |
+
|
25 |
+
Kimi-VL also advances the pareto frontiers of multimodal models in processing long contexts and perceiving clearly: Equipped with a 128K extended context window, Kimi-VL can processes long and diverse inputs, achieving impressive scores of 64.5 on LongVideoBench, and 35.1 on MMLongBench-Doc; Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost with common visual inputs and general tasks.
|
26 |
+
|
27 |
+
Building on this foundation, we introduce an advanced long-thinking variant: **Kimi-VL-Thinking**. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameter footprint, setting a new standard for efficient yet capable multimodal **thinking** models.
|
28 |
+
|
29 |
+
## Architecture
|
30 |
+
|
31 |
+
The model adopts an MoE language model, a native-resolution visual encoder (MoonViT), and an MLP projector, as illustrated in the following image.
|
32 |
+
|
33 |
+
<div align="center">
|
34 |
+
<img width="90%" src="figures/arch.png">
|
35 |
+
</div>
|
36 |
+
|
37 |
+
## Model Variants
|
38 |
+
|
39 |
+
🤗 For general multimodal perception and understanding, OCR, long video and long document, video perception, and agent uses, we recommend `Kimi-VL-A3B-Instruct` for efficient inference; for advanced text and multimodal reasoning (e.g. math), please consider using `Kimi-VL-A3B-Thinking`.
|
40 |
+
|
41 |
+
<div align="center">
|
42 |
+
|
43 |
+
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download Link** |
|
44 |
+
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
45 |
+
| Kimi-VL-A3B-Instruct | 16B | 3B | 128K | [🤗 Hugging Face](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct) |
|
46 |
+
| Kimi-VL-A3B-Thinking | 16B | 3B | 128K | [🤗 Hugging Face](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking) |
|
47 |
+
|
48 |
+
</div>
|
49 |
+
|
50 |
+
## Performance
|
51 |
+
|
52 |
+
As an efficient model, Kimi-VL can robustly handle diverse tasks (fine-grained perception, math, college-level problems, OCR, agent, etc) across a broad spectrum of input forms (single-image, multi-image, video, long-document, etc).
|
53 |
+
|
54 |
+
|
55 |
+
A brief comparison with existing 10B-level dense VLMs and DeepSeek-VL2 (A4.5B):
|
56 |
+
|
57 |
+
<div align="center">
|
58 |
+
<img width="100%" src="figures/instruct_perf.png">
|
59 |
+
</div>
|
60 |
+
|
61 |
+
Full comparison (GPT-4o included for reference):
|
62 |
+
|
63 |
+
<div align="center">
|
64 |
+
|
65 |
+
| Benchmark (Metric) | GPT-4o | GPT-4o-Mini | Qwen2.5-VL-7B | Llama3.2-11B-Inst. | Gemma3-12B-IT | DeepSeek-VL2 | Kimi-VL-A3B-Instruct |
|
66 |
+
|--------------------------------|--------|-------------|---------------|--------------------|---------------|--------------|-------------|
|
67 |
+
| **Architecture** | - | - | Dense | Dense | Dense | MoE | MoE |
|
68 |
+
| **# Act. Params (LLM+VT)** | - | - | 7.6B+0.7B | 8B+2.6B | 12B+0.4B | 4.1B+0.4B | 2.8B+0.4B |
|
69 |
+
| **# Total Params** | - | - | 8B | 11B | 12B | 28B | 16B |
|
70 |
+
| | | | | | | | |
|
71 |
+
| **College-level** | | | | | | | |
|
72 |
+
| MMMU-Val (Pass@1) | *69.1* | **60.0** | 58.6 | 48 | 59.6 | 51.1 | 57.0 |
|
73 |
+
| VideoMMMU (Pass@1) | *61.2* | - | 47.4 | 41.8 | **57.2** | 44.4 | 52.6 |
|
74 |
+
| MMVU-Val (Pass@1) | *67.4* | **61.6** | 50.1 | 44.4 | 57.0 | 52.1 | 52.2 |
|
75 |
+
| | | | | | | | |
|
76 |
+
| **General** | | | | | | | |
|
77 |
+
| MMBench-EN-v1.1 (Acc) | *83.1* | 77.1 | 82.6 | 65.8 | 74.6 | 79.6 | **83.1** |
|
78 |
+
| MMStar (Acc) | *64.7* | 54.8 | **63.9** | 49.8 | 56.1 | 55.5 | 61.3 |
|
79 |
+
| MMVet (Pass@1) | *69.1* | 66.9 | **67.1** | 57.6 | 64.9 | 60.0 | 66.7 |
|
80 |
+
| RealWorldQA (Acc) | *75.4* | 67.1 | **68.5** | 63.3 | 59.1 | 68.4 | 68.1 |
|
81 |
+
| AI2D (Acc) | *84.6* | 77.8 | 83.9 | 77.3 | 78.1 | 81.4 | **84.9** |
|
82 |
+
| | | | | | | | |
|
83 |
+
| **Multi-image** | | | | | | | |
|
84 |
+
| BLINK (Acc) | *68.0* | 53.6 | 56.4 | 39.8 | 50.3 | - | **57.3** |
|
85 |
+
| | | | | | | | |
|
86 |
+
| **Math** | | | | | | | |
|
87 |
+
| MathVista (Pass@1) | *63.8* | 52.5 | 68.2 | 47.7 | 56.1 | 62.8 | **68.7** |
|
88 |
+
| MathVision (Pass@1) | *30.4* | - | 25.1 | 13.6 | **32.1** | 17.3 | 21.4 |
|
89 |
+
| | | | | | | | |
|
90 |
+
| **OCR** | | | | | | | |
|
91 |
+
| InfoVQA (Acc) | *80.7* | 57.9 | 82.6 | 34.6 | 43.8 | 78.1 | **83.2** |
|
92 |
+
| OCRBench (Acc) | *815* | 785 | 864 | 753 | 702 | 811 | **867** |
|
93 |
+
| | | | | | | | |
|
94 |
+
| **OS Agent** | | | | | | | |
|
95 |
+
| ScreenSpot-V2 (Acc) | *18.1* | 6.9 | 84.2 | - | - | - | **92.8** |
|
96 |
+
| ScreenSpot-Pro (Acc) | *0.8* | - | 29.0 | - | - | - | **34.5** |
|
97 |
+
| OSWorld (Pass@1) | *5.03* | - | 2.5 | - | - | - | **8.22** |
|
98 |
+
| WindowsAgentArena (Pass@1) | *9.4* | 2.7 | 3.4 | - | - | - | **10.4** |
|
99 |
+
| | | | | | | | |
|
100 |
+
| **Long Document** | | | | | | | |
|
101 |
+
| MMLongBench-Doc (Acc) | *42.8* | 29.0 | 29.6 | 13.8 | 21.3 | - | **35.1** |
|
102 |
+
| | | | | | | | |
|
103 |
+
| **Long Video** | | | | | | | |
|
104 |
+
| Video-MME (w/o sub.) | *71.9* | 64.8 | 65.1 | 46.0 | 58.2 | - | **67.8** |
|
105 |
+
| Video-MME (w sub.) | *77.2* | 68.9 | 71.6 | 49.5 | 62.1 | - | **72.6** |
|
106 |
+
| MLVU-MCQ (Acc) | *64.6* | 48.1 | 70.2 | 44.4 | 52.3 | - | **74.2** |
|
107 |
+
| LongVideoBench (val) | *66.7* | 58.2 | 56.0 | 45.5 | 51.5 | - | **64.5** |
|
108 |
+
| | | | | | | | |
|
109 |
+
| **Video Perception** | | | | | | | |
|
110 |
+
| EgoSchema (full) | 72.2 | - | 65.0 | 54.3 | 56.9 | 38.5 | **78.5** |
|
111 |
+
| VSI-Bench | 34.0 | - | 34.2 | 20.6 | 32.4 | 21.7 | **37.4** |
|
112 |
+
| TOMATO | *37.7* | 28.8 | 27.6 | 21.5 | 28.6 | 27.2 | **31.7** |
|
113 |
+
|
114 |
+
</div>
|
115 |
+
|
116 |
+
### Inference with 🤗 Hugging Face Transformers
|
117 |
+
|
118 |
+
We introduce how to use our model at inference stage using transformers library. It is recommended to use python=3.10, torch>=2.1.0, and transformers=4.48.2 as the development environment.
|
119 |
+
|
120 |
+
```python
|
121 |
+
from PIL import Image
|
122 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
123 |
+
|
124 |
+
model_path = "moonshotai/Kimi-VL-A3B-Instruct"
|
125 |
+
model = AutoModelForCausalLM.from_pretrained(
|
126 |
+
model_path,
|
127 |
+
torch_dtype="auto",
|
128 |
+
device_map="auto",
|
129 |
+
trust_remote_code=True,
|
130 |
+
)
|
131 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
132 |
+
|
133 |
+
image_path = "./figures/demo.png"
|
134 |
+
image = Image.open(image_path)
|
135 |
+
messages = [
|
136 |
+
{"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": "What is the dome building in the picture? Think step by step."}]}
|
137 |
+
]
|
138 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
139 |
+
inputs = processor(images=image, text=text, return_tensors="pt", padding=True, truncation=True).to(model.device)
|
140 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
141 |
+
generated_ids_trimmed = [
|
142 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
143 |
+
]
|
144 |
+
response = processor.batch_decode(
|
145 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
146 |
+
)[0]
|
147 |
+
print(response)
|
148 |
+
```
|
149 |
+
|
150 |
+
### Inference with VLLM
|
151 |
+
|
152 |
+
Coming soon!
|
chat_template.jinja
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- for message in messages -%}
|
2 |
+
{%- if loop.first and messages[0]['role'] != 'system' -%}
|
3 |
+
{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}
|
4 |
+
{%- endif -%}
|
5 |
+
{%- if message['role'] == 'system' -%}
|
6 |
+
{{'<|im_system|>'}}
|
7 |
+
{%- endif -%}
|
8 |
+
{%- if message['role'] == 'user' -%}
|
9 |
+
{{'<|im_user|>'}}
|
10 |
+
{%- endif -%}
|
11 |
+
{%- if message['role'] == 'assistant' -%}
|
12 |
+
{{'<|im_assistant|>'}}
|
13 |
+
{%- endif -%}
|
14 |
+
{{- message['role'] -}}
|
15 |
+
{{'<|im_middle|>'}}
|
16 |
+
{%- if message['content'] is string -%}
|
17 |
+
{{- message['content'] + '<|im_end|>' -}}
|
18 |
+
{%- else -%}
|
19 |
+
{%- for content in message['content'] -%}
|
20 |
+
{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
|
21 |
+
{{'<|media_start|>image<|media_content|><|media_pad|><|media_end|>'}}
|
22 |
+
{%- else -%}
|
23 |
+
{{content['text']}}
|
24 |
+
{%- endif -%}
|
25 |
+
{%- endfor -%}
|
26 |
+
{{'<|im_end|>'}}
|
27 |
+
{%- endif -%}
|
28 |
+
{%- endfor -%}
|
29 |
+
{%- if add_generation_prompt -%}
|
30 |
+
{{'<|im_assistant|>assistant<|im_middle|>'}}
|
31 |
+
{%- endif -%}
|
config.json
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"KimiVLForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_kimi_vl.KimiVLConfig",
|
7 |
+
"AutoModel": "modeling_kimi_vl.KimiVLForConditionalGeneration",
|
8 |
+
"AutoModelForCausalLM": "modeling_kimi_vl.KimiVLForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"vision_config": {
|
11 |
+
"model_type": "moonvit",
|
12 |
+
"patch_size": 14,
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_hidden_layers": 27,
|
15 |
+
"hidden_size": 1152,
|
16 |
+
"intermediate_size": 4304,
|
17 |
+
"init_pos_emb_height": 64,
|
18 |
+
"init_pos_emb_width": 64,
|
19 |
+
"merge_kernel_size": [
|
20 |
+
2,
|
21 |
+
2
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"text_config": {
|
25 |
+
"vocab_size": 163840,
|
26 |
+
"max_position_embeddings": 131072,
|
27 |
+
"hidden_size": 2048,
|
28 |
+
"intermediate_size": 11264,
|
29 |
+
"moe_intermediate_size": 1408,
|
30 |
+
"num_hidden_layers": 27,
|
31 |
+
"num_attention_heads": 16,
|
32 |
+
"n_shared_experts": 2,
|
33 |
+
"n_routed_experts": 64,
|
34 |
+
"ep_size": 1,
|
35 |
+
"routed_scaling_factor": 2.446,
|
36 |
+
"kv_lora_rank": 512,
|
37 |
+
"q_lora_rank": null,
|
38 |
+
"qk_rope_head_dim": 64,
|
39 |
+
"v_head_dim": 128,
|
40 |
+
"qk_nope_head_dim": 128,
|
41 |
+
"topk_method": "noaux_tc",
|
42 |
+
"n_group": 1,
|
43 |
+
"topk_group": 1,
|
44 |
+
"num_experts_per_tok": 6,
|
45 |
+
"moe_layer_freq": 1,
|
46 |
+
"first_k_dense_replace": 1,
|
47 |
+
"norm_topk_prob": true,
|
48 |
+
"scoring_func": "sigmoid",
|
49 |
+
"aux_loss_alpha": 0.001,
|
50 |
+
"seq_aux": true,
|
51 |
+
"num_key_value_heads": 16,
|
52 |
+
"hidden_act": "silu",
|
53 |
+
"initializer_range": 0.02,
|
54 |
+
"rms_norm_eps": 1e-05,
|
55 |
+
"pretraining_tp": 1,
|
56 |
+
"use_cache": true,
|
57 |
+
"rope_theta": 800000.0,
|
58 |
+
"rope_scaling": null,
|
59 |
+
"attention_bias": false,
|
60 |
+
"attention_dropout": 0.0,
|
61 |
+
"bos_token_id": 163584,
|
62 |
+
"pad_token_id": 163839,
|
63 |
+
"eos_token_id": 163585,
|
64 |
+
"torch_dtype": "bfloat16",
|
65 |
+
"tie_word_embeddings": false
|
66 |
+
},
|
67 |
+
"ignore_index": -100,
|
68 |
+
"media_placeholder_token_id": 163605,
|
69 |
+
"torch_dtype": "bfloat16",
|
70 |
+
"transformers_version": "4.50.3",
|
71 |
+
"tie_word_embeddings": false,
|
72 |
+
"vocab_size": 163840,
|
73 |
+
"model_type": "kimi_vl"
|
74 |
+
}
|
configuration_kimi_vl.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
8 |
+
|
9 |
+
class DeepseekV3Config(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
|
12 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
13 |
+
defaults will yield a similar configuration to that of the DeepSeek-V3.
|
14 |
+
|
15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
16 |
+
documentation from [`PretrainedConfig`] for more information.
|
17 |
+
|
18 |
+
Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py
|
19 |
+
|
20 |
+
Args:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 129280):
|
22 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`DeepseekV3Model`]
|
24 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
25 |
+
Dimension of the hidden representations.
|
26 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
27 |
+
Dimension of the MLP representations.
|
28 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
29 |
+
Dimension of the MoE representations.
|
30 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
31 |
+
Number of hidden layers in the Transformer decoder.
|
32 |
+
num_nextn_predict_layers (`int`, *optional*, defaults to 1):
|
33 |
+
Number of nextn predict layers in the DeepSeekV3 Model.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
35 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
36 |
+
n_shared_experts (`int`, *optional*, defaults to None):
|
37 |
+
Number of shared experts, None means dense model.
|
38 |
+
n_routed_experts (`int`, *optional*, defaults to None):
|
39 |
+
Number of routed experts, None means dense model.
|
40 |
+
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
41 |
+
Scaling factor or routed experts.
|
42 |
+
topk_method (`str`, *optional*, defaults to `gready`):
|
43 |
+
Topk method used in routed gate.
|
44 |
+
n_group (`int`, *optional*, defaults to None):
|
45 |
+
Number of groups for routed experts.
|
46 |
+
topk_group (`int`, *optional*, defaults to None):
|
47 |
+
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
48 |
+
num_experts_per_tok (`int`, *optional*, defaults to None):
|
49 |
+
Number of selected experts, None means dense model.
|
50 |
+
moe_layer_freq (`int`, *optional*, defaults to 1):
|
51 |
+
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
52 |
+
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
53 |
+
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
54 |
+
\--k dense layers--/
|
55 |
+
norm_topk_prob (`bool`, *optional*, defaults to False):
|
56 |
+
Whether to normalize the weights of the routed experts.
|
57 |
+
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
58 |
+
Method of computing expert weights.
|
59 |
+
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
60 |
+
Auxiliary loss weight coefficient.
|
61 |
+
seq_aux = (`bool`, *optional*, defaults to True):
|
62 |
+
Whether to compute the auxiliary loss for each individual sample.
|
63 |
+
num_key_value_heads (`int`, *optional*):
|
64 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
65 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
66 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
67 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
68 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
69 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
70 |
+
`num_attention_heads`.
|
71 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
72 |
+
The non-linear activation function (function or string) in the decoder.
|
73 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
74 |
+
The maximum sequence length that this model might ever be used with.
|
75 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
76 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
77 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
78 |
+
The epsilon used by the rms normalization layers.
|
79 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
81 |
+
relevant if `config.is_decoder=True`.
|
82 |
+
pad_token_id (`int`, *optional*):
|
83 |
+
Padding token id.
|
84 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
85 |
+
Beginning of stream token id.
|
86 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
87 |
+
End of stream token id.
|
88 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
89 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
90 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
91 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
92 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
93 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether to tie weight embeddings
|
95 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
96 |
+
The base period of the RoPE embeddings.
|
97 |
+
rope_scaling (`Dict`, *optional*):
|
98 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
99 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
100 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
101 |
+
`max_position_embeddings` to the expected new maximum.
|
102 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
103 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
104 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
105 |
+
The dropout ratio for the attention probabilities.
|
106 |
+
|
107 |
+
```python
|
108 |
+
>>> from transformers import DeepseekV3Model, DeepseekV3Config
|
109 |
+
|
110 |
+
>>> # Initializing a Deepseek-V3 style configuration
|
111 |
+
>>> configuration = DeepseekV3Config()
|
112 |
+
|
113 |
+
>>> # Accessing the model configuration
|
114 |
+
>>> configuration = model.config
|
115 |
+
```"""
|
116 |
+
|
117 |
+
model_type = "deepseek_v3"
|
118 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_size=129280,
|
123 |
+
hidden_size=7168,
|
124 |
+
intermediate_size=18432,
|
125 |
+
moe_intermediate_size = 2048,
|
126 |
+
num_hidden_layers=61,
|
127 |
+
num_nextn_predict_layers=1,
|
128 |
+
num_attention_heads=128,
|
129 |
+
num_key_value_heads=128,
|
130 |
+
n_shared_experts = 1,
|
131 |
+
n_routed_experts = 256,
|
132 |
+
ep_size = 1,
|
133 |
+
routed_scaling_factor = 2.5,
|
134 |
+
kv_lora_rank = 512,
|
135 |
+
q_lora_rank = 1536,
|
136 |
+
qk_rope_head_dim = 64,
|
137 |
+
v_head_dim = 128,
|
138 |
+
qk_nope_head_dim = 128,
|
139 |
+
topk_method = 'noaux_tc',
|
140 |
+
n_group = 8,
|
141 |
+
topk_group = 4,
|
142 |
+
num_experts_per_tok = 8,
|
143 |
+
moe_layer_freq = 1,
|
144 |
+
first_k_dense_replace = 3,
|
145 |
+
norm_topk_prob = True,
|
146 |
+
scoring_func = 'sigmoid',
|
147 |
+
aux_loss_alpha = 0.001,
|
148 |
+
seq_aux = True,
|
149 |
+
hidden_act="silu",
|
150 |
+
max_position_embeddings=4096,
|
151 |
+
initializer_range=0.02,
|
152 |
+
rms_norm_eps=1e-6,
|
153 |
+
use_cache=True,
|
154 |
+
pad_token_id=None,
|
155 |
+
bos_token_id=0,
|
156 |
+
eos_token_id=1,
|
157 |
+
pretraining_tp=1,
|
158 |
+
tie_word_embeddings=False,
|
159 |
+
rope_theta=10000.0,
|
160 |
+
rope_scaling=None,
|
161 |
+
attention_bias=False,
|
162 |
+
attention_dropout=0.0,
|
163 |
+
**kwargs,
|
164 |
+
):
|
165 |
+
self.vocab_size = vocab_size
|
166 |
+
self.max_position_embeddings = max_position_embeddings
|
167 |
+
self.hidden_size = hidden_size
|
168 |
+
self.intermediate_size = intermediate_size
|
169 |
+
self.moe_intermediate_size = moe_intermediate_size
|
170 |
+
self.num_hidden_layers = num_hidden_layers
|
171 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
172 |
+
self.num_attention_heads = num_attention_heads
|
173 |
+
self.n_shared_experts = n_shared_experts
|
174 |
+
self.n_routed_experts = n_routed_experts
|
175 |
+
self.ep_size = ep_size
|
176 |
+
self.routed_scaling_factor = routed_scaling_factor
|
177 |
+
self.kv_lora_rank = kv_lora_rank
|
178 |
+
self.q_lora_rank = q_lora_rank
|
179 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
180 |
+
self.v_head_dim = v_head_dim
|
181 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
182 |
+
self.topk_method = topk_method
|
183 |
+
self.n_group = n_group
|
184 |
+
self.topk_group = topk_group
|
185 |
+
self.num_experts_per_tok = num_experts_per_tok
|
186 |
+
self.moe_layer_freq = moe_layer_freq
|
187 |
+
self.first_k_dense_replace = first_k_dense_replace
|
188 |
+
self.norm_topk_prob = norm_topk_prob
|
189 |
+
self.scoring_func = scoring_func
|
190 |
+
self.aux_loss_alpha = aux_loss_alpha
|
191 |
+
self.seq_aux = seq_aux
|
192 |
+
# for backward compatibility
|
193 |
+
if num_key_value_heads is None:
|
194 |
+
num_key_value_heads = num_attention_heads
|
195 |
+
|
196 |
+
self.num_key_value_heads = num_key_value_heads
|
197 |
+
self.hidden_act = hidden_act
|
198 |
+
self.initializer_range = initializer_range
|
199 |
+
self.rms_norm_eps = rms_norm_eps
|
200 |
+
self.pretraining_tp = pretraining_tp
|
201 |
+
self.use_cache = use_cache
|
202 |
+
self.rope_theta = rope_theta
|
203 |
+
self.rope_scaling = rope_scaling
|
204 |
+
self.attention_bias = attention_bias
|
205 |
+
self.attention_dropout = attention_dropout
|
206 |
+
|
207 |
+
super().__init__(
|
208 |
+
pad_token_id=pad_token_id,
|
209 |
+
bos_token_id=bos_token_id,
|
210 |
+
eos_token_id=eos_token_id,
|
211 |
+
tie_word_embeddings=tie_word_embeddings,
|
212 |
+
**kwargs,
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
class MoonViTConfig(PretrainedConfig):
|
217 |
+
model_type = "moonvit"
|
218 |
+
|
219 |
+
def __init__(
|
220 |
+
self,
|
221 |
+
patch_size: int = 14,
|
222 |
+
init_pos_emb_height: int = 64,
|
223 |
+
init_pos_emb_width: int = 64,
|
224 |
+
num_attention_heads: int = 16,
|
225 |
+
num_hidden_layers: int = 27,
|
226 |
+
hidden_size: int = 1152,
|
227 |
+
intermediate_size: int = 4304,
|
228 |
+
merge_kernel_size: tuple[int, int] = (2, 2),
|
229 |
+
**kwargs,
|
230 |
+
):
|
231 |
+
super().__init__(**kwargs)
|
232 |
+
self.patch_size = patch_size
|
233 |
+
# Positional embedding config
|
234 |
+
self.init_pos_emb_height = init_pos_emb_height
|
235 |
+
self.init_pos_emb_width = init_pos_emb_width
|
236 |
+
# Transformer config
|
237 |
+
self.num_hidden_layers = num_hidden_layers
|
238 |
+
self.num_attention_heads = num_attention_heads
|
239 |
+
self.hidden_size = hidden_size
|
240 |
+
self.intermediate_size = intermediate_size
|
241 |
+
# Patch merger config
|
242 |
+
self.merge_kernel_size = merge_kernel_size
|
243 |
+
|
244 |
+
|
245 |
+
class KimiVLConfig(PretrainedConfig):
|
246 |
+
model_type = "kimi_vl"
|
247 |
+
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
vision_config: Optional[Union[dict, MoonViTConfig]] = None,
|
251 |
+
text_config: Optional[Union[dict, DeepseekV3Config]] = None,
|
252 |
+
ignore_index: int = -100,
|
253 |
+
media_placeholder_token_id: int = 163605,
|
254 |
+
pad_token_id: int = 0,
|
255 |
+
**kwargs
|
256 |
+
):
|
257 |
+
if vision_config is None:
|
258 |
+
vision_config = MoonViTConfig()
|
259 |
+
elif isinstance(vision_config, dict):
|
260 |
+
vision_config = MoonViTConfig(**vision_config)
|
261 |
+
self.vision_config = vision_config
|
262 |
+
|
263 |
+
if text_config is None:
|
264 |
+
text_config = DeepseekV3Config()
|
265 |
+
elif isinstance(text_config, dict):
|
266 |
+
text_config = DeepseekV3Config(**text_config)
|
267 |
+
self.text_config = text_config
|
268 |
+
|
269 |
+
self.ignore_index = ignore_index
|
270 |
+
self.media_placeholder_token_id = media_placeholder_token_id
|
271 |
+
|
272 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
figures/arch.png
ADDED
![]() |
Git LFS Details
|
figures/demo.png
ADDED
![]() |
Git LFS Details
|
figures/instruct_perf.png
ADDED
![]() |
Git LFS Details
|
figures/logo.png
ADDED
![]() |
Git LFS Details
|
image_processing_kimi_vl.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for KimiVL."""
|
2 |
+
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from typing import Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torchvision.transforms import functional as TF
|
10 |
+
from transformers.image_utils import ImageInput, make_list_of_images, valid_images
|
11 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
12 |
+
from transformers.utils import TensorType
|
13 |
+
|
14 |
+
|
15 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
16 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
17 |
+
|
18 |
+
|
19 |
+
class KimiVLImageProcessor(BaseImageProcessor):
|
20 |
+
model_type = "kimi_vl"
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
patch_size: int = 14,
|
25 |
+
pad_input: bool = False,
|
26 |
+
image_mean: tuple[float, float, float] = OPENAI_DATASET_MEAN,
|
27 |
+
image_std: tuple[float, float, float] = OPENAI_DATASET_STD,
|
28 |
+
in_token_limit: int = 4096,
|
29 |
+
merge_kernel_size: list[int, int] = [2, 2],
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
super().__init__(**kwargs)
|
33 |
+
self.in_token_limit = in_token_limit
|
34 |
+
self.patch_size = patch_size
|
35 |
+
self.pad_input = pad_input
|
36 |
+
self.image_mean = image_mean
|
37 |
+
self.image_std = image_std
|
38 |
+
self.merge_kernel_size = merge_kernel_size
|
39 |
+
|
40 |
+
def rescale(
|
41 |
+
self, image: Image.Image, merge_kernel_size: list[int, int] = [2, 2]
|
42 |
+
) -> Image.Image:
|
43 |
+
w, h = image.size
|
44 |
+
patch_size = self.patch_size
|
45 |
+
|
46 |
+
if (w // patch_size) * (h // patch_size) > self.in_token_limit:
|
47 |
+
scale = math.sqrt(self.in_token_limit / ((w // patch_size) * (h // patch_size)))
|
48 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
49 |
+
image = image.resize((new_w, new_h), Image.Resampling.BICUBIC)
|
50 |
+
if self.pad_input:
|
51 |
+
new_w, new_h = image.size
|
52 |
+
pad_size_h = merge_kernel_size[0] * patch_size
|
53 |
+
pad_size_w = merge_kernel_size[1] * patch_size
|
54 |
+
|
55 |
+
pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h
|
56 |
+
pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w
|
57 |
+
|
58 |
+
image = TF.pad(image, (0, 0, pad_w, pad_h))
|
59 |
+
else:
|
60 |
+
new_w, new_h = image.size
|
61 |
+
new_w = new_w - new_w % patch_size
|
62 |
+
new_h = new_h - new_h % patch_size
|
63 |
+
image = TF.center_crop(image, (new_h, new_w))
|
64 |
+
|
65 |
+
w, h = image.size
|
66 |
+
if w // patch_size >= 512 or h // patch_size >= 512:
|
67 |
+
raise ValueError("Exceed pos emb")
|
68 |
+
|
69 |
+
return image
|
70 |
+
|
71 |
+
def to_tensor(self, image: Image.Image) -> torch.Tensor:
|
72 |
+
return TF.to_tensor(image.convert("RGB"))
|
73 |
+
|
74 |
+
def normalize(self, image: torch.Tensor) -> torch.Tensor:
|
75 |
+
return TF.normalize(image, self.image_mean, self.image_std)
|
76 |
+
|
77 |
+
def patchify(self, image: torch.Tensor) -> tuple[torch.Tensor, list[int, int]]:
|
78 |
+
patch_size = self.patch_size
|
79 |
+
C, H, W = image.shape
|
80 |
+
patches = image.reshape(C, H // patch_size, patch_size, W // patch_size, patch_size)
|
81 |
+
patches = patches.permute(1, 3, 0, 2, 4)
|
82 |
+
patches = patches.contiguous().view(-1, C, patch_size, patch_size)
|
83 |
+
grid_hw = (H // patch_size, W // patch_size)
|
84 |
+
return patches, grid_hw
|
85 |
+
|
86 |
+
def _preprocess(self, image: ImageInput) -> tuple[torch.Tensor, list[int, int]]:
|
87 |
+
"""
|
88 |
+
Preprocess image and patchify it.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image (`ImageInput`):
|
92 |
+
Image to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
patches: torch.Tensor
|
96 |
+
grid_hw: list[int, int]
|
97 |
+
"""
|
98 |
+
image = self.rescale(image, self.merge_kernel_size)
|
99 |
+
image = self.to_tensor(image)
|
100 |
+
image = self.normalize(image)
|
101 |
+
patches, grid_hw = self.patchify(image)
|
102 |
+
return patches, grid_hw
|
103 |
+
|
104 |
+
def preprocess(
|
105 |
+
self,
|
106 |
+
images: ImageInput,
|
107 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
108 |
+
) -> BatchFeature:
|
109 |
+
images = make_list_of_images(images)
|
110 |
+
|
111 |
+
if not valid_images(images):
|
112 |
+
raise ValueError(
|
113 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
114 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
115 |
+
)
|
116 |
+
|
117 |
+
pixel_values, image_grid_hws = [], []
|
118 |
+
for image in images:
|
119 |
+
patches, image_grid_hw = self._preprocess(image)
|
120 |
+
pixel_values.append(patches)
|
121 |
+
image_grid_hws.append(image_grid_hw)
|
122 |
+
pixel_values = torch.concat(pixel_values, dim=0)
|
123 |
+
image_grid_hws = np.array(image_grid_hws)
|
124 |
+
data = {"pixel_values": pixel_values, "image_grid_hws": image_grid_hws}
|
125 |
+
|
126 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5ef3ebd9727f82e34417a778317d2cc9c08762fe0bc4a2ee333b8a52cf7c1a5
|
3 |
+
size 4994390288
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45ecd00decdad65e7d3f494028ed0c79d0cd56f145adae077ffa78b5b8ff95c0
|
3 |
+
size 4995061424
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9ba98f01e22eea43da8cfbf6f09ff0857616cd9e1df4603a735c111755109ef
|
3 |
+
size 4996100112
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f7eb3fc5c12481fd1a81d2708fa4a299ff4c207a5dbafb5b8bef25ab9fd8b23
|
3 |
+
size 4996100320
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db83e896b3d75f4bc51f621ae90ad61e8f6f7901f49a06b5c40348b839057206
|
3 |
+
size 4998185720
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abed41982a3f9c7d05f69bb560dad7bcb93cfa764c77a2b59127f35dc787983c
|
3 |
+
size 4996099448
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e2ddd33f2b4f472898482860585bd6d73d4397c8c833ed9d00a2024443f7a77
|
3 |
+
size 2840161216
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_kimi_vl.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_kimi_vl.KimiVLImageProcessor",
|
4 |
+
"AutoProcessor": "processing_kimi_vl.KimiVLProcessor"
|
5 |
+
},
|
6 |
+
"in_token_limit": 4096,
|
7 |
+
"patch_size": 14,
|
8 |
+
"num_pooled_tokens": 1024,
|
9 |
+
"image_mean": [
|
10 |
+
0.5,
|
11 |
+
0.5,
|
12 |
+
0.5
|
13 |
+
],
|
14 |
+
"image_std": [
|
15 |
+
0.5,
|
16 |
+
0.5,
|
17 |
+
0.5
|
18 |
+
],
|
19 |
+
"pad_input": true
|
20 |
+
}
|
processing_kimi_vl.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The Moonshot Team and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# The code is based on the Qwen2VL processor (qwen2_vl/processing_qwen2_vl.py), but modified for KimiVL.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""
|
18 |
+
Processor class for KimiVL.
|
19 |
+
"""
|
20 |
+
|
21 |
+
from typing import List, Union
|
22 |
+
|
23 |
+
from transformers.feature_extraction_utils import BatchFeature
|
24 |
+
from transformers.image_utils import ImageInput
|
25 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
|
26 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class KimiVLProcessorKwargs(ProcessingKwargs, total=False):
|
34 |
+
_defaults = {
|
35 |
+
"text_kwargs": {
|
36 |
+
"padding": False,
|
37 |
+
},
|
38 |
+
"images_kwargs": {},
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class KimiVLProcessor(ProcessorMixin):
|
43 |
+
r"""
|
44 |
+
Constructs a KimiVL processor which wraps a KimiVL image processor and a tokenizer into a single processor.
|
45 |
+
|
46 |
+
[`KimiVLProcessor`] offers all the functionalities of [`KimiVLImageProcessor`] and [`TikTokenTokenizer`]. See the
|
47 |
+
[`~KimiVLProcessor.__call__`] and [`~KimiVLProcessor.decode`] for more information.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
image_processor ([`KimiVLImageProcessor`], *optional*):
|
51 |
+
The image processor is a required input.
|
52 |
+
tokenizer ([`TikTokenTokenizer`], *optional*):
|
53 |
+
The tokenizer is a required input.
|
54 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
55 |
+
in a chat into a tokenizable string.
|
56 |
+
"""
|
57 |
+
|
58 |
+
attributes = ["image_processor", "tokenizer"]
|
59 |
+
valid_kwargs = [ "chat_template"]
|
60 |
+
image_processor_class = "AutoImageProcessor"
|
61 |
+
tokenizer_class = "AutoTokenizer"
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
image_processor=None,
|
66 |
+
tokenizer=None,
|
67 |
+
chat_template=None,
|
68 |
+
**kwargs,
|
69 |
+
):
|
70 |
+
self.image_token = "<|media_pad|>"
|
71 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
72 |
+
|
73 |
+
def __call__(
|
74 |
+
self,
|
75 |
+
images: ImageInput = None,
|
76 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
77 |
+
**kwargs: Unpack[KimiVLProcessorKwargs],
|
78 |
+
) -> BatchFeature:
|
79 |
+
"""
|
80 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
81 |
+
and `kwargs` arguments to TikTokenTokenizer's [`~TikTokenTokenizer.__call__`] if `text` is not `None` to encode
|
82 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
83 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
|
84 |
+
of the above two methods for more information.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
88 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
89 |
+
tensor. Both channels-first and channels-last formats are supported.
|
90 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
91 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
92 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
93 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
94 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
95 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
96 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
97 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
98 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
99 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
103 |
+
|
104 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
105 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
106 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
107 |
+
`None`).
|
108 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
109 |
+
"""
|
110 |
+
if images is None and text is None:
|
111 |
+
raise ValueError("You have to specify at least one of `images` or `text`.")
|
112 |
+
|
113 |
+
# check if images and text inputs are reversed for BC
|
114 |
+
images, text = _validate_images_text_input_order(images, text)
|
115 |
+
|
116 |
+
output_kwargs = self._merge_kwargs(
|
117 |
+
KimiVLProcessorKwargs,
|
118 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
119 |
+
**kwargs,
|
120 |
+
)
|
121 |
+
if images is not None:
|
122 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
123 |
+
image_grid_hws = image_inputs["image_grid_hws"]
|
124 |
+
else:
|
125 |
+
image_inputs = {}
|
126 |
+
image_grid_hws = None
|
127 |
+
|
128 |
+
if isinstance(text, str):
|
129 |
+
text = [text]
|
130 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
131 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
132 |
+
|
133 |
+
if image_grid_hws is not None:
|
134 |
+
merge_length = self.image_processor.merge_kernel_size[0] * self.image_processor.merge_kernel_size[1]
|
135 |
+
index = 0
|
136 |
+
for i in range(len(text)):
|
137 |
+
while self.image_token in text[i]:
|
138 |
+
text[i] = text[i].replace(
|
139 |
+
self.image_token,
|
140 |
+
"<|placeholder|>" * (image_grid_hws[index].prod() // merge_length),
|
141 |
+
1,
|
142 |
+
)
|
143 |
+
index += 1
|
144 |
+
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
145 |
+
|
146 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
147 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
148 |
+
|
149 |
+
def batch_decode(self, *args, **kwargs):
|
150 |
+
"""
|
151 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
152 |
+
refer to the docstring of this method for more information.
|
153 |
+
"""
|
154 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
155 |
+
|
156 |
+
def decode(self, *args, **kwargs):
|
157 |
+
"""
|
158 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
159 |
+
the docstring of this method for more information.
|
160 |
+
"""
|
161 |
+
return self.tokenizer.decode(*args, **kwargs)
|
162 |
+
|
163 |
+
@property
|
164 |
+
def model_input_names(self):
|
165 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
166 |
+
image_processor_input_names = self.image_processor.model_input_names
|
167 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
168 |
+
|
169 |
+
|
170 |
+
__all__ = ["KimiVLProcessorKwargs"]
|
tiktoken.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6c497a7469b33ced9c38afb1ad6e47f03f5e5dc05f15930799210ec050c5103
|
3 |
+
size 2795286
|
tokenization_moonshot.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tiktoken
|
3 |
+
|
4 |
+
from logging import getLogger
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import (
|
7 |
+
cast,
|
8 |
+
Tuple,
|
9 |
+
Dict,
|
10 |
+
Iterator,
|
11 |
+
List,
|
12 |
+
Union,
|
13 |
+
Optional,
|
14 |
+
)
|
15 |
+
from shutil import copyfile
|
16 |
+
from tiktoken.load import load_tiktoken_bpe
|
17 |
+
from tokenizers import AddedToken
|
18 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
19 |
+
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
20 |
+
|
21 |
+
|
22 |
+
logger = getLogger(__name__)
|
23 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
|
24 |
+
SPIECE_UNDERLINE = "▁"
|
25 |
+
|
26 |
+
|
27 |
+
class TikTokenTokenizer(PreTrainedTokenizer):
|
28 |
+
"""
|
29 |
+
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
|
30 |
+
|
31 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
32 |
+
this superclass for more information regarding those methods.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_file (`str`):
|
36 |
+
The path to the Tiktoken model file.
|
37 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
|
38 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
39 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
|
40 |
+
The end of sequence token.
|
41 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
|
42 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
43 |
+
token instead. The second to last item in special_tokens.
|
44 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
|
45 |
+
The token used for padding, for example when batching sequences of different lengths.
|
46 |
+
additional_special_tokens (list of `str`, *optional*):
|
47 |
+
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
|
48 |
+
skipped when decoding if `skip_special_tokens` is set to `True`.
|
49 |
+
"""
|
50 |
+
|
51 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
52 |
+
|
53 |
+
model_input_names = ["input_ids", "attention_mask"]
|
54 |
+
|
55 |
+
special_tokens: Dict[str, int]
|
56 |
+
|
57 |
+
num_reserved_special_tokens = 256
|
58 |
+
|
59 |
+
pat_str = "|".join(
|
60 |
+
[
|
61 |
+
r"""[\p{Han}]+""",
|
62 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
63 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
64 |
+
r"""\p{N}{1,3}""",
|
65 |
+
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
|
66 |
+
r"""\s*[\r\n]+""",
|
67 |
+
r"""\s+(?!\S)""",
|
68 |
+
r"""\s+""",
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
vocab_file,
|
75 |
+
bos_token: Union[str, AddedToken] = "[BOS]",
|
76 |
+
eos_token: Union[str, AddedToken] = "[EOS]",
|
77 |
+
unk_token: Union[str, AddedToken] = "[UNK]",
|
78 |
+
pad_token: Union[str, AddedToken] = "[PAD]",
|
79 |
+
additional_special_tokens: Optional[List[str]] = None,
|
80 |
+
added_tokens_decoder: Optional[dict] = None,
|
81 |
+
**kwargs,
|
82 |
+
):
|
83 |
+
assert os.path.isfile(vocab_file), vocab_file
|
84 |
+
if additional_special_tokens is None:
|
85 |
+
additional_special_tokens = [
|
86 |
+
"<|im_end|>",
|
87 |
+
"<|im_middle|>",
|
88 |
+
"<|im_user|>",
|
89 |
+
"<|im_assistant|>",
|
90 |
+
"<|im_system|>",
|
91 |
+
]
|
92 |
+
special_tokens_mapping = {
|
93 |
+
i: added_tokens_decoder[i].content for i in added_tokens_decoder
|
94 |
+
}
|
95 |
+
|
96 |
+
special_tokens = (
|
97 |
+
[str(bos_token), str(eos_token)]
|
98 |
+
+ additional_special_tokens
|
99 |
+
+ [str(unk_token), str(pad_token)]
|
100 |
+
)
|
101 |
+
|
102 |
+
self.vocab_file = vocab_file
|
103 |
+
mergeable_ranks = load_tiktoken_bpe(vocab_file)
|
104 |
+
num_base_tokens = len(mergeable_ranks)
|
105 |
+
self.special_tokens = {
|
106 |
+
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i
|
107 |
+
for i in range(
|
108 |
+
num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2
|
109 |
+
)
|
110 |
+
}
|
111 |
+
|
112 |
+
self.model = tiktoken.Encoding(
|
113 |
+
name=Path(vocab_file).name,
|
114 |
+
pat_str=self.pat_str,
|
115 |
+
mergeable_ranks=mergeable_ranks,
|
116 |
+
special_tokens=self.special_tokens,
|
117 |
+
)
|
118 |
+
logger.info(f"Reloaded tiktoken model from {vocab_file}")
|
119 |
+
|
120 |
+
self.n_words: int = self.model.n_vocab
|
121 |
+
# BOS / EOS token IDs
|
122 |
+
self.bos_id: int = self.special_tokens[str(bos_token)]
|
123 |
+
self.eos_id: int = self.special_tokens[str(eos_token)]
|
124 |
+
logger.info(
|
125 |
+
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
|
126 |
+
)
|
127 |
+
|
128 |
+
self.pad_id: int = self.special_tokens[str(pad_token)]
|
129 |
+
self.unk_id: int = self.special_tokens[str(unk_token)]
|
130 |
+
|
131 |
+
self.byte_encoder = bytes_to_unicode()
|
132 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
133 |
+
|
134 |
+
self.decoder = {}
|
135 |
+
for i in range(self.n_words):
|
136 |
+
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
|
137 |
+
decoding = "".join(
|
138 |
+
[
|
139 |
+
self.byte_encoder[ord(char)]
|
140 |
+
for char in self.model.decode_single_token_bytes(i).decode(
|
141 |
+
"latin-1"
|
142 |
+
)
|
143 |
+
]
|
144 |
+
)
|
145 |
+
self.decoder[i] = decoding
|
146 |
+
|
147 |
+
self.encoder = {}
|
148 |
+
for i in range(self.n_words):
|
149 |
+
if i in self.decoder:
|
150 |
+
self.encoder[self.decoder[i]] = i
|
151 |
+
|
152 |
+
super().__init__(
|
153 |
+
bos_token=bos_token,
|
154 |
+
eos_token=eos_token,
|
155 |
+
unk_token=unk_token,
|
156 |
+
pad_token=pad_token,
|
157 |
+
additional_special_tokens=additional_special_tokens,
|
158 |
+
**kwargs,
|
159 |
+
)
|
160 |
+
self.all_special_ids_set = set(self.all_special_ids)
|
161 |
+
|
162 |
+
def encode(
|
163 |
+
self, text: str, allow_special_tokens: bool = True, **kwargs
|
164 |
+
) -> List[int]:
|
165 |
+
"""
|
166 |
+
Encodes a string into a list of token IDs.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
text (str): The input string to be encoded.
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
list[int]: A list of token IDs.
|
173 |
+
"""
|
174 |
+
# If there are other args, we should call super().encode because there are a lot of code
|
175 |
+
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
|
176 |
+
if len(kwargs) > 0:
|
177 |
+
return super().encode(text, **kwargs)
|
178 |
+
|
179 |
+
assert type(text) is str
|
180 |
+
|
181 |
+
# The tiktoken tokenizer can handle <=400k chars without
|
182 |
+
# pyo3_runtime.PanicException.
|
183 |
+
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
|
184 |
+
|
185 |
+
# https://github.com/openai/tiktoken/issues/195
|
186 |
+
# Here we iterate over subsequences and split if we exceed the limit
|
187 |
+
# of max consecutive non-whitespace or whitespace characters.
|
188 |
+
MAX_NO_WHITESPACES_CHARS = 25_000
|
189 |
+
|
190 |
+
substrs = (
|
191 |
+
substr
|
192 |
+
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
|
193 |
+
for substr in self._split_whitespaces_or_nonwhitespaces(
|
194 |
+
text[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
|
195 |
+
)
|
196 |
+
)
|
197 |
+
t: List[int] = []
|
198 |
+
for substr in substrs:
|
199 |
+
if allow_special_tokens:
|
200 |
+
t.extend(
|
201 |
+
# we should consider special token as a common token
|
202 |
+
self.model.encode(
|
203 |
+
substr,
|
204 |
+
allowed_special="all",
|
205 |
+
)
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
t.extend(
|
209 |
+
# we should consider special token as a common token
|
210 |
+
self.model.encode(
|
211 |
+
substr,
|
212 |
+
disallowed_special=(),
|
213 |
+
)
|
214 |
+
)
|
215 |
+
return t
|
216 |
+
|
217 |
+
def decode(self, token_ids: Union[int, List[int]], **kwargs) -> str:
|
218 |
+
"""
|
219 |
+
Decodes a list of token IDs into a string.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
t (List[int]): The list of token IDs to be decoded.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
str: The decoded string.
|
226 |
+
"""
|
227 |
+
# If there are other args, we should call super().decode because there are a lot of code
|
228 |
+
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
|
229 |
+
if len(kwargs) > 0:
|
230 |
+
return super().decode(token_ids, **kwargs)
|
231 |
+
|
232 |
+
if type(token_ids) is int:
|
233 |
+
token_ids = [token_ids]
|
234 |
+
|
235 |
+
return self.model.decode(cast(List[int], token_ids))
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def _split_whitespaces_or_nonwhitespaces(
|
239 |
+
s: str, max_consecutive_slice_len: int
|
240 |
+
) -> Iterator[str]:
|
241 |
+
"""
|
242 |
+
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
|
243 |
+
consecutive whitespaces or consecutive non-whitespaces.
|
244 |
+
"""
|
245 |
+
current_slice_len = 0
|
246 |
+
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
|
247 |
+
slice_start = 0
|
248 |
+
|
249 |
+
for i in range(len(s)):
|
250 |
+
is_now_space = s[i].isspace()
|
251 |
+
|
252 |
+
if current_slice_is_space ^ is_now_space:
|
253 |
+
current_slice_len = 1
|
254 |
+
current_slice_is_space = is_now_space
|
255 |
+
else:
|
256 |
+
current_slice_len += 1
|
257 |
+
if current_slice_len > max_consecutive_slice_len:
|
258 |
+
yield s[slice_start:i]
|
259 |
+
slice_start = i
|
260 |
+
current_slice_len = 1
|
261 |
+
yield s[slice_start:]
|
262 |
+
|
263 |
+
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
|
264 |
+
|
265 |
+
@property
|
266 |
+
def vocab_size(self) -> int:
|
267 |
+
return self.n_words
|
268 |
+
|
269 |
+
def get_vocab(self) -> Dict[str, int]:
|
270 |
+
return self.encoder
|
271 |
+
|
272 |
+
def _tokenize(self, text: str, **kwargs) -> List[str]:
|
273 |
+
return [self.decoder[t] for t in self.encode(text)]
|
274 |
+
|
275 |
+
def _convert_token_to_id(self, token: str) -> int:
|
276 |
+
return self.encoder.get(token, self.unk_id)
|
277 |
+
|
278 |
+
def _convert_id_to_token(self, index: int) -> str:
|
279 |
+
return self.decoder.get(index)
|
280 |
+
|
281 |
+
@staticmethod
|
282 |
+
def clean_up_tokenization(out_string: str) -> str:
|
283 |
+
return out_string
|
284 |
+
|
285 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
286 |
+
text = "".join(tokens).replace(SPIECE_UNDERLINE, "")
|
287 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode(
|
288 |
+
"utf-8", "replace"
|
289 |
+
)
|
290 |
+
return text
|
291 |
+
|
292 |
+
def save_vocabulary(
|
293 |
+
self, save_directory: str, filename_prefix: Optional[str] = None
|
294 |
+
) -> Tuple[str]:
|
295 |
+
if not os.path.isdir(save_directory):
|
296 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
297 |
+
return
|
298 |
+
out_vocab_file = os.path.join(
|
299 |
+
save_directory,
|
300 |
+
(filename_prefix + "-" if filename_prefix else "")
|
301 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
302 |
+
)
|
303 |
+
|
304 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
305 |
+
out_vocab_file
|
306 |
+
) and os.path.isfile(self.vocab_file):
|
307 |
+
copyfile(self.vocab_file, out_vocab_file)
|
308 |
+
|
309 |
+
return (out_vocab_file,)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"163584": {
|
4 |
+
"content": "[BOS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"163585": {
|
12 |
+
"content": "[EOS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"163586": {
|
20 |
+
"content": "<|im_end|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"163601": {
|
28 |
+
"content": "<|im_middle|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"163587": {
|
36 |
+
"content": "<|im_user|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"163588": {
|
44 |
+
"content": "<|im_assistant|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"163594": {
|
52 |
+
"content": "<|im_system|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"163602": {
|
60 |
+
"content": "<|media_start|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"163603": {
|
68 |
+
"content": "<|media_content|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"163604": {
|
76 |
+
"content": "<|media_end|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"163605": {
|
84 |
+
"content": "<|media_pad|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"163838": {
|
92 |
+
"content": "[PAD]",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"163839": {
|
100 |
+
"content": "[UNK]",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"additional_special_tokens": [
|
109 |
+
"<|im_end|>",
|
110 |
+
"<|im_user|>",
|
111 |
+
"<|im_assistant|>",
|
112 |
+
"<|im_system|>",
|
113 |
+
"<|im_middle|>",
|
114 |
+
"<|media_start|>",
|
115 |
+
"<|media_content|>",
|
116 |
+
"<|media_end|>",
|
117 |
+
"<|media_pad|>"
|
118 |
+
],
|
119 |
+
"bos_token": "[BOS]",
|
120 |
+
"clean_up_tokenization_spaces": false,
|
121 |
+
"eos_token": "[EOS]",
|
122 |
+
"extra_special_tokens": {},
|
123 |
+
"model_max_length": 1048576,
|
124 |
+
"pad_token": "[PAD]",
|
125 |
+
"unk_token": "[UNK]",
|
126 |
+
"tokenizer_class": "TikTokenTokenizer",
|
127 |
+
"chat_template": "{%- for message in messages -%}{%- if loop.first and messages[0]['role'] != 'system' -%}{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}{%- endif -%}{%- if message['role'] == 'system' -%}{{'<|im_system|>'}}{%- endif -%}{%- if message['role'] == 'user' -%}{{'<|im_user|>'}}{%- endif -%}{%- if message['role'] == 'assistant' -%}{{'<|im_assistant|>'}}{%- endif -%}{{- message['role'] -}}{{'<|im_middle|>'}}{%- if message['content'] is string -%}{{- message['content'] + '<|im_end|>' -}}{%- else -%}{%- for content in message['content'] -%}{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}{{'<|media_start|>image<|media_content|><|media_pad|><|media_end|>'}}{%- else -%}{{content['text']}}{%- endif -%}{%- endfor -%}{{'<|im_end|>'}}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{'<|im_assistant|>assistant<|im_middle|>'}}{%- endif -%}",
|
128 |
+
"auto_map": {
|
129 |
+
"AutoTokenizer": [
|
130 |
+
"tokenization_moonshot.TikTokenTokenizer",
|
131 |
+
null
|
132 |
+
]
|
133 |
+
}
|
134 |
+
}
|