Add library_name metadata and link to paper
#3
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,17 +1,15 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
base_model:
|
4 |
- moonshotai/Kimi-VL-A3B-Instruct
|
|
|
5 |
pipeline_tag: image-text-to-text
|
|
|
6 |
---
|
7 |
|
8 |
-
|
9 |
-
|
10 |
<div align="center">
|
11 |
<img width="30%" src="figures/logo.png">
|
12 |
</div>
|
13 |
|
14 |
-
|
15 |
## Introduction
|
16 |
|
17 |
We present **Kimi-VL**, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers **advanced multimodal reasoning, long-context understanding, and strong agent capabilities**βall while activating only **2.8B** parameters in its language decoder (Kimi-VL-A3B).
|
@@ -26,6 +24,8 @@ Kimi-VL also advances the pareto frontiers of multimodal models in processing lo
|
|
26 |
|
27 |
Building on this foundation, we introduce an advanced long-thinking variant: **Kimi-VL-Thinking**. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameter footprint, setting a new standard for efficient yet capable multimodal **thinking** models.
|
28 |
|
|
|
|
|
29 |
## Architecture
|
30 |
|
31 |
The model adopts an MoE language model, a native-resolution visual encoder (MoonViT), and an MLP projector, as illustrated in the following image.
|
@@ -59,7 +59,6 @@ Full comparison on MMMU, MathVision, and MathVista-mini:
|
|
59 |
|
60 |
<div align="center">
|
61 |
|
62 |
-
|
63 |
| Benchmark (Metric) | GPT-4o | GPT-4o-mini | Qwen2.5-VL-72B | Qwen2.5-VL-7B | Gemma-3-27B | Gemma-3-12B | o1-1217 | QVQ-72B | Kimi-k1.5 | Kimi-VL-Thinking-A3B |
|
64 |
|---------------------------------|--------|-------------|----------------|---------------|-------------|-------------|---------|----------|-----------|----------------------|
|
65 |
| *Thinking Model?* | | | | | | | β
| β
| β
| β
|
|
@@ -67,7 +66,6 @@ Full comparison on MMMU, MathVision, and MathVista-mini:
|
|
67 |
| MathVista (mini) (Pass@1) | 63.8 | 56.7 | 74.8 | 68.2 | 62.3 | 56.4 | 71.0 | 71.4 | 74.9 | 71.3 |
|
68 |
| MMMU (val) (Pass@1) | 69.1 | 60.0 | 74.8 | 58.6 | 64.8 | 59.6 | 77.3 | 70.3 | 70.0 | 61.7 |
|
69 |
|
70 |
-
|
71 |
</div>
|
72 |
|
73 |
### Inference with π€ Hugging Face Transformers
|
@@ -113,7 +111,7 @@ print(response)
|
|
113 |
|
114 |
We have submitted a Merge Request [#16387](https://github.com/vllm-project/vllm/pull/16387) to vLLM. You are welcome to deploy Kimi-VL using the branch corresponding to the vLLM MR until the MR is merged.
|
115 |
|
116 |
-
## Citation
|
117 |
|
118 |
```
|
119 |
@misc{kimiteam2025kimivltechnicalreport,
|
@@ -125,5 +123,4 @@ We have submitted a Merge Request [#16387](https://github.com/vllm-project/vllm/
|
|
125 |
primaryClass={cs.CV},
|
126 |
url={https://arxiv.org/abs/2504.07491},
|
127 |
}
|
128 |
-
```
|
129 |
-
|
|
|
1 |
---
|
|
|
2 |
base_model:
|
3 |
- moonshotai/Kimi-VL-A3B-Instruct
|
4 |
+
license: mit
|
5 |
pipeline_tag: image-text-to-text
|
6 |
+
library_name: transformers
|
7 |
---
|
8 |
|
|
|
|
|
9 |
<div align="center">
|
10 |
<img width="30%" src="figures/logo.png">
|
11 |
</div>
|
12 |
|
|
|
13 |
## Introduction
|
14 |
|
15 |
We present **Kimi-VL**, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers **advanced multimodal reasoning, long-context understanding, and strong agent capabilities**βall while activating only **2.8B** parameters in its language decoder (Kimi-VL-A3B).
|
|
|
24 |
|
25 |
Building on this foundation, we introduce an advanced long-thinking variant: **Kimi-VL-Thinking**. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameter footprint, setting a new standard for efficient yet capable multimodal **thinking** models.
|
26 |
|
27 |
+
More information can be found in our technical report: [Kimi-VL Technical Report](https://arxiv.org/abs/2504.07491).
|
28 |
+
|
29 |
## Architecture
|
30 |
|
31 |
The model adopts an MoE language model, a native-resolution visual encoder (MoonViT), and an MLP projector, as illustrated in the following image.
|
|
|
59 |
|
60 |
<div align="center">
|
61 |
|
|
|
62 |
| Benchmark (Metric) | GPT-4o | GPT-4o-mini | Qwen2.5-VL-72B | Qwen2.5-VL-7B | Gemma-3-27B | Gemma-3-12B | o1-1217 | QVQ-72B | Kimi-k1.5 | Kimi-VL-Thinking-A3B |
|
63 |
|---------------------------------|--------|-------------|----------------|---------------|-------------|-------------|---------|----------|-----------|----------------------|
|
64 |
| *Thinking Model?* | | | | | | | β
| β
| β
| β
|
|
|
|
66 |
| MathVista (mini) (Pass@1) | 63.8 | 56.7 | 74.8 | 68.2 | 62.3 | 56.4 | 71.0 | 71.4 | 74.9 | 71.3 |
|
67 |
| MMMU (val) (Pass@1) | 69.1 | 60.0 | 74.8 | 58.6 | 64.8 | 59.6 | 77.3 | 70.3 | 70.0 | 61.7 |
|
68 |
|
|
|
69 |
</div>
|
70 |
|
71 |
### Inference with π€ Hugging Face Transformers
|
|
|
111 |
|
112 |
We have submitted a Merge Request [#16387](https://github.com/vllm-project/vllm/pull/16387) to vLLM. You are welcome to deploy Kimi-VL using the branch corresponding to the vLLM MR until the MR is merged.
|
113 |
|
114 |
+
## 8. Citation
|
115 |
|
116 |
```
|
117 |
@misc{kimiteam2025kimivltechnicalreport,
|
|
|
123 |
primaryClass={cs.CV},
|
124 |
url={https://arxiv.org/abs/2504.07491},
|
125 |
}
|
126 |
+
```
|
|