Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: false
base_model: JackFram/llama-68m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 34a002145b99ed0b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/34a002145b99ed0b_train_data.json
  type:
    field_instruction: problem
    field_output: outputs
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 200
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ac606e85-1166-41a0-af29-102faa0690eb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 200
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: null
micro_batch_size: 16
mlflow_experiment_name: /tmp/34a002145b99ed0b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
saves_per_epoch: 0
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .05000000
wandb_entity: null
wandb_mode: disabled
wandb_name: cb389588-c816-41d5-abb0-cc3edb3cfbc1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cb389588-c816-41d5-abb0-cc3edb3cfbc1
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

ac606e85-1166-41a0-af29-102faa0690eb

This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7932

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0010 1 2.9496
2.4435 0.1956 200 2.1728
2.1036 0.3911 400 2.0391
2.015 0.5867 600 1.9774
1.9711 0.7822 800 1.9413
1.9438 0.9778 1000 1.9172
1.9259 1.1733 1200 1.9003
1.9075 1.3689 1400 1.8875
1.9033 1.5644 1600 1.8763
1.8945 1.7600 1800 1.8686
1.8885 1.9555 2000 1.8613
1.8805 2.1511 2200 1.8551
1.8774 2.3466 2400 1.8521
1.8669 2.5422 2600 1.8463
1.8669 2.7377 2800 1.8433
1.8675 2.9333 3000 1.8386
1.8681 3.1288 3200 1.8362
1.8561 3.3244 3400 1.8336
1.8597 3.5199 3600 1.8300
1.8493 3.7155 3800 1.8275
1.8551 3.9110 4000 1.8256
1.8518 4.1066 4200 1.8242
1.85 4.3021 4400 1.8218
1.8444 4.4977 4600 1.8207
1.8457 4.6932 4800 1.8184
1.8481 4.8888 5000 1.8172
1.8483 5.0843 5200 1.8160
1.8429 5.2799 5400 1.8148
1.8405 5.4754 5600 1.8138
1.8399 5.6710 5800 1.8129
1.8422 5.8665 6000 1.8111
1.8433 6.0621 6200 1.8107
1.8364 6.2576 6400 1.8087
1.8387 6.4532 6600 1.8079
1.8329 6.6487 6800 1.8081
1.8379 6.8443 7000 1.8074
1.839 7.0398 7200 1.8057
1.8344 7.2354 7400 1.8055
1.8344 7.4309 7600 1.8047
1.8377 7.6265 7800 1.8039
1.8333 7.8220 8000 1.8031
1.8355 8.0176 8200 1.8020
1.8271 8.2132 8400 1.8021
1.8367 8.4087 8600 1.8018
1.8315 8.6043 8800 1.8011
1.8346 8.7998 9000 1.8005
1.8256 8.9954 9200 1.7994
1.8342 9.1909 9400 1.7996
1.8286 9.3865 9600 1.7992
1.8315 9.5820 9800 1.7981
1.8284 9.7776 10000 1.7977
1.8264 9.9731 10200 1.7967
1.8314 10.1687 10400 1.7966
1.8268 10.3642 10600 1.7961
1.8279 10.5598 10800 1.7963
1.8211 10.7553 11000 1.7952
1.8288 10.9509 11200 1.7949
1.8307 11.1464 11400 1.7949
1.8227 11.3420 11600 1.7945
1.8282 11.5375 11800 1.7944
1.8243 11.7331 12000 1.7929
1.8265 11.9286 12200 1.7931
1.8278 12.1242 12400 1.7932

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mrferr3t/ac606e85-1166-41a0-af29-102faa0690eb

Base model

JackFram/llama-68m
Adapter
(207)
this model