See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: JackFram/llama-68m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 34a002145b99ed0b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/34a002145b99ed0b_train_data.json
type:
field_instruction: problem
field_output: outputs
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 200
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ac606e85-1166-41a0-af29-102faa0690eb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 200
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: null
micro_batch_size: 16
mlflow_experiment_name: /tmp/34a002145b99ed0b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .05000000
wandb_entity: null
wandb_mode: disabled
wandb_name: cb389588-c816-41d5-abb0-cc3edb3cfbc1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cb389588-c816-41d5-abb0-cc3edb3cfbc1
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
ac606e85-1166-41a0-af29-102faa0690eb
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7932
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0010 | 1 | 2.9496 |
2.4435 | 0.1956 | 200 | 2.1728 |
2.1036 | 0.3911 | 400 | 2.0391 |
2.015 | 0.5867 | 600 | 1.9774 |
1.9711 | 0.7822 | 800 | 1.9413 |
1.9438 | 0.9778 | 1000 | 1.9172 |
1.9259 | 1.1733 | 1200 | 1.9003 |
1.9075 | 1.3689 | 1400 | 1.8875 |
1.9033 | 1.5644 | 1600 | 1.8763 |
1.8945 | 1.7600 | 1800 | 1.8686 |
1.8885 | 1.9555 | 2000 | 1.8613 |
1.8805 | 2.1511 | 2200 | 1.8551 |
1.8774 | 2.3466 | 2400 | 1.8521 |
1.8669 | 2.5422 | 2600 | 1.8463 |
1.8669 | 2.7377 | 2800 | 1.8433 |
1.8675 | 2.9333 | 3000 | 1.8386 |
1.8681 | 3.1288 | 3200 | 1.8362 |
1.8561 | 3.3244 | 3400 | 1.8336 |
1.8597 | 3.5199 | 3600 | 1.8300 |
1.8493 | 3.7155 | 3800 | 1.8275 |
1.8551 | 3.9110 | 4000 | 1.8256 |
1.8518 | 4.1066 | 4200 | 1.8242 |
1.85 | 4.3021 | 4400 | 1.8218 |
1.8444 | 4.4977 | 4600 | 1.8207 |
1.8457 | 4.6932 | 4800 | 1.8184 |
1.8481 | 4.8888 | 5000 | 1.8172 |
1.8483 | 5.0843 | 5200 | 1.8160 |
1.8429 | 5.2799 | 5400 | 1.8148 |
1.8405 | 5.4754 | 5600 | 1.8138 |
1.8399 | 5.6710 | 5800 | 1.8129 |
1.8422 | 5.8665 | 6000 | 1.8111 |
1.8433 | 6.0621 | 6200 | 1.8107 |
1.8364 | 6.2576 | 6400 | 1.8087 |
1.8387 | 6.4532 | 6600 | 1.8079 |
1.8329 | 6.6487 | 6800 | 1.8081 |
1.8379 | 6.8443 | 7000 | 1.8074 |
1.839 | 7.0398 | 7200 | 1.8057 |
1.8344 | 7.2354 | 7400 | 1.8055 |
1.8344 | 7.4309 | 7600 | 1.8047 |
1.8377 | 7.6265 | 7800 | 1.8039 |
1.8333 | 7.8220 | 8000 | 1.8031 |
1.8355 | 8.0176 | 8200 | 1.8020 |
1.8271 | 8.2132 | 8400 | 1.8021 |
1.8367 | 8.4087 | 8600 | 1.8018 |
1.8315 | 8.6043 | 8800 | 1.8011 |
1.8346 | 8.7998 | 9000 | 1.8005 |
1.8256 | 8.9954 | 9200 | 1.7994 |
1.8342 | 9.1909 | 9400 | 1.7996 |
1.8286 | 9.3865 | 9600 | 1.7992 |
1.8315 | 9.5820 | 9800 | 1.7981 |
1.8284 | 9.7776 | 10000 | 1.7977 |
1.8264 | 9.9731 | 10200 | 1.7967 |
1.8314 | 10.1687 | 10400 | 1.7966 |
1.8268 | 10.3642 | 10600 | 1.7961 |
1.8279 | 10.5598 | 10800 | 1.7963 |
1.8211 | 10.7553 | 11000 | 1.7952 |
1.8288 | 10.9509 | 11200 | 1.7949 |
1.8307 | 11.1464 | 11400 | 1.7949 |
1.8227 | 11.3420 | 11600 | 1.7945 |
1.8282 | 11.5375 | 11800 | 1.7944 |
1.8243 | 11.7331 | 12000 | 1.7929 |
1.8265 | 11.9286 | 12200 | 1.7931 |
1.8278 | 12.1242 | 12400 | 1.7932 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mrferr3t/ac606e85-1166-41a0-af29-102faa0690eb
Base model
JackFram/llama-68m