Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: false
base_model: unsloth/Qwen2.5-3B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - cbfc164a7ba5dfd4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/cbfc164a7ba5dfd4_train_data.json
  type:
    field_instruction: input persona
    field_output: synthesized text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1000
early_stopping_threshold: 1.0e-07
eval_max_new_tokens: 128
eval_steps: 220
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/e9d760b4-d8b5-4635-8832-ae9ca64a1eb9
hub_repo: null
hub_strategy: all_checkpoints
hub_token: null
learning_rate: 0.00015
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 176
lora_alpha: 64
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 17480
micro_batch_size: 4
mlflow_experiment_name: /tmp/cbfc164a7ba5dfd4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 220
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: .01886792
wandb_entity: null
wandb_mode: disabled
wandb_name: a18f4630-bcbf-426d-863a-da31c2f7c188
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a18f4630-bcbf-426d-863a-da31c2f7c188
warmup_steps: 1748
weight_decay: 0
xformers_attention: null

e9d760b4-d8b5-4635-8832-ae9ca64a1eb9

This model is a fine-tuned version of unsloth/Qwen2.5-3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1748
  • training_steps: 17480

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 1.0805
0.9316 0.0363 220 0.7945
0.7715 0.0726 440 0.7721
0.7584 0.1089 660 0.7638
0.7335 0.1453 880 0.7561
0.7493 0.1816 1100 0.7526
0.7347 0.2179 1320 0.7502
0.7387 0.2542 1540 0.7501
0.7484 0.2905 1760 0.7490
0.7402 0.3268 1980 0.7442
0.7434 0.3631 2200 0.7446
0.7295 0.3994 2420 0.7426
0.7302 0.4358 2640 0.7421
0.7196 0.4721 2860 0.7412
0.7154 0.5084 3080 0.7393
0.731 0.5447 3300 0.7378
0.7342 0.5810 3520 0.7371
0.7227 0.6173 3740 0.7346
0.7258 0.6536 3960 0.7341
0.7292 0.6899 4180 0.7310
0.7278 0.7263 4400 0.7326
0.7174 0.7626 4620 0.7306
0.7239 0.7989 4840 0.7291
0.7149 0.8352 5060 0.7270
0.7171 0.8715 5280 0.7275
0.7135 0.9078 5500 0.7261
0.711 0.9441 5720 0.7245
0.7224 0.9804 5940 0.7241
0.6513 1.0168 6160 0.7333
0.6055 1.0531 6380 0.7333
0.6099 1.0894 6600 0.7345
0.5935 1.1257 6820 0.7376
0.6052 1.1620 7040 0.7367
0.5997 1.1983 7260 0.7332
0.5992 1.2346 7480 0.7328
0.5981 1.2709 7700 0.7314
0.5967 1.3073 7920 0.7336
0.6002 1.3436 8140 0.7294
0.599 1.3799 8360 0.7316
0.5949 1.4162 8580 0.7308
0.5966 1.4525 8800 0.7291
0.6066 1.4888 9020 0.7267
0.6041 1.5251 9240 0.7257
0.5982 1.5614 9460 0.7287
0.591 1.5978 9680 0.7301
0.5931 1.6341 9900 0.7236
0.6101 1.6704 10120 0.7237
0.6068 1.7067 10340 0.7257
0.6055 1.7430 10560 0.7213
0.6023 1.7793 10780 0.7212
0.5991 1.8156 11000 0.7205
0.5993 1.8519 11220 0.7205
0.5858 1.8883 11440 0.7191
0.5958 1.9246 11660 0.7172
0.5869 1.9609 11880 0.7187
0.5867 1.9972 12100 0.7163
0.4452 2.0335 12320 0.7713
0.4373 2.0698 12540 0.7774
0.447 2.1061 12760 0.7740
0.4382 2.1424 12980 0.7827
0.442 2.1788 13200 0.7790
0.4346 2.2151 13420 0.7822
0.4335 2.2514 13640 0.7789
0.4393 2.2877 13860 0.7840
0.4315 2.3240 14080 0.7841
0.4459 2.3603 14300 0.7816
0.4324 2.3966 14520 0.7805
0.4364 2.4329 14740 0.7841
0.4356 2.4693 14960 0.7814
0.442 2.5056 15180 0.7814
0.4323 2.5419 15400 0.7836
0.4393 2.5782 15620 0.7828
0.4259 2.6145 15840 0.7836
0.4455 2.6508 16060 0.7831
0.4318 2.6871 16280 0.7823
0.4318 2.7234 16500 0.7825
0.4376 2.7598 16720 0.7831
0.4377 2.7961 16940 0.7831
0.433 2.8324 17160 0.7828
0.4449 2.8687 17380 0.7828

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mrferr3t/e9d760b4-d8b5-4635-8832-ae9ca64a1eb9

Base model

Qwen/Qwen2.5-3B
Finetuned
unsloth/Qwen2.5-3B
Adapter
(299)
this model