metadata
language:
- en
license: llama3
tags:
- Llama-3.1
- unsloth
- instruct
- finetune
- reasoning
- hybrid-mode
- chatml
- function calling
- tool use
- json mode
- structured outputs
- atropos
- dataforge
- long context
- roleplaying
- chat
- mlx
- mlx-my-repo
base_model: unsloth/Hermes-4-405B
library_name: transformers
widget:
- example_title: Hermes 4
messages:
- role: system
content: >-
You are Hermes 4, a capable, neutrally-aligned assistant. Prefer
concise, correct answers.
- role: user
content: Explain the difference between BFS and DFS to a new CS student.
model-index:
- name: Hermes-4-Llama-3.1-405B
results: []
mrtoots/unsloth-Hermes-4-405B-mlx-3Bit
The Model mrtoots/unsloth-Hermes-4-405B-mlx-3Bit was converted to MLX format from unsloth/Hermes-4-405B using mlx-lm version 0.26.4.
Toots' Note:
This model was converted and quantized utilizing unsloth's version of Hermes-4-405B. Should include the chat template fixes.
Please follow and support unsloth's work if you like it!
🦛 If you want a free consulting session, fill out this form to get in touch! 🤗
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mrtoots/Hermes-4-405B-mlx-3Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)