debertabase_term_paper

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1196
  • Precision: 0.9279
  • Recall: 0.9363
  • F1: 0.9320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
1.2937 1.0 789 0.1477 0.9083 0.9224 0.9151
1.2937 2.0 1578 0.1311 0.9227 0.9322 0.9270
1.2937 3.0 2367 0.1196 0.9279 0.9363 0.9320

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
6
Safetensors
Model size
184M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for muratti18462/debertabase_term_paper

Finetuned
(405)
this model