Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Arabic using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import librosa
import torch
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_file_to_data(file, srate=16_000):
batch = {}
speech, sampling_rate = librosa.load(file, sr=srate)
batch["speech"] = speech
batch["sampling_rate"] = sampling_rate
return batch
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).to(device)
def predict(data):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
try:
attention_mask = features.attention_mask.to(device)
except:
attention_mask = None
with torch.no_grad():
predicted = torch.argmax(model(input_values, attention_mask=attention_mask).logits, dim=-1)
data["predicted"] = processor.tokenizer.decode(predicted[0])
print("predicted:", buckwalter.untrans(data["predicted"]))
return data
predict(load_file_to_data("common_voice_ar_19058307.mp3"))
Output Result:
predicted: هل يمكنني التحدث مع المسؤول هنا
Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
dataset = load_dataset("common_voice", "ar", split="test[:10]")
resamplers = { # all three sampling rates exist in test split
48000: torchaudio.transforms.Resample(48000, 16000),
44100: torchaudio.transforms.Resample(44100, 16000),
32000: torchaudio.transforms.Resample(32000, 16000),
}
def prepare_example(example):
speech, sampling_rate = torchaudio.load(example["path"])
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
return example
dataset = dataset.map(prepare_example)
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).eval()
def predict(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
predicted = torch.argmax(model(inputs.input_values).logits, dim=-1)
predicted[predicted == -100] = processor.tokenizer.pad_token_id # see fine-tuning script
batch["predicted"] = processor.tokenizer.batch_decode(predicted)
return batch
dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"])
for reference, predicted in zip(dataset["sentence"], dataset["predicted"]):
print("reference:", reference)
print("predicted:", buckwalter.untrans(predicted))
print("--")
Output Results:
reference: ما أطول عودك!
predicted: ما اطول عودك
reference: ماتت عمتي منذ سنتين.
predicted: ما تتعمتي منذو سنتين
reference: الألمانية ليست لغة سهلة.
predicted: الالمانية ليست لغة سهلة
reference: طلبت منه أن يبعث الكتاب إلينا.
predicted: طلبت منه ان يبعث الكتاب الينا
reference: .السيد إيتو رجل متعلم
predicted: السيد ايتو رجل متعلم
reference: الحمد لله.
predicted: الحمذ لللا
reference: في الوقت نفسه بدأت الرماح والسهام تقع بين الغزاة
predicted: في الوقت نفسه ابدات الرماح و السهام تقع بين الغزاء
reference: لا أريد أن أكون ثقيلَ الظِّل ، أريد أن أكون رائعًا! !
predicted: لا اريد ان اكون ثقيل الظل اريد ان اكون رائع
reference: خذ مظلة معك في حال أمطرت.
predicted: خذ مظلة معك في حال امطرت
reference: .ركب توم السيارة
predicted: ركب توم السيارة
The model evaluation (WER) on the Arabic test data of Common Voice.
import re
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
set_seed(42)
test_dataset = load_dataset("common_voice", "ar", split="test")
processor = Wav2Vec2Processor.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model = Wav2Vec2ForCTC.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model.to("cuda")
chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets. We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
noise = re.compile(""" ّ | # Tashdid
َ | # Fatha
ً | # Tanwin Fath
ُ | # Damma
ٌ | # Tanwin Damm
ِ | # Kasra
ٍ | # Tanwin Kasr
ْ | # Sukun
ـ # Tatwil/Kashida
""", re.VERBOSE)
batch["sentence"] = re.sub(noise, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
wer = load_metric("wer")
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 53.54
- Downloads last month
- 42
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Datasets used to train muzamil47/wav2vec2-large-xlsr-53-arabic-demo
Evaluation results
- Test WER on Common Voice 6.1 (Arabic)self-reported53.540