SwahiliInstruct-v0.2
This is a Mistral model that has been fine-tuned on the Swahili Alpaca dataset for 3 epochs.
Prompt Template
### Maelekezo:
{query}
### Jibu:
<Leave new line for model to respond>
Usage
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/SwahiliInstruct-v0.2")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/SwahiliInstruct-v0.2", device_map="auto")
query = "Nipe maagizo ya kutengeneza mkate wa mandizi"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, do_sample=True, repetition_penalty=1.1)
output = text_gen(f"### Maelekezo:\n{query}\n### Jibu:\n")
print(output[0]['generated_text'])
"""
Maagizo ya kutengeneza mkate wa mandazi:
1. Preheat tanuri hadi 375°F (190°C).
2. Paka sufuria ya uso na siagi au jotoa sufuria.
3. Katika bakuli la chumvi, ongeza viungo vifuatavyo: unga, sukari ya kahawa, chumvi, mdalasini, na unga wa kakao.
Koroga mchanganyiko pamoja na mbegu za kikombe 1 1/2 za mtindi wenye jamii na hatua ya maji nyepesi.
4. Kando ya uwanja, changanya zaini ya yai 2
"""
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 54.25 |
AI2 Reasoning Challenge (25-Shot) | 55.20 |
HellaSwag (10-Shot) | 78.22 |
MMLU (5-Shot) | 50.30 |
TruthfulQA (0-shot) | 57.08 |
Winogrande (5-shot) | 73.24 |
GSM8k (5-shot) | 11.45 |
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mwitiderrick/SwahiliInstruct-v0.2
Dataset used to train mwitiderrick/SwahiliInstruct-v0.2
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard55.200
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard78.220
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard50.300
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.080
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard73.240
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard11.450