Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d16d145cf1763c87_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d16d145cf1763c87_train_data.json
  type:
    field_input: text
    field_instruction: context
    field_output: label
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
  max_steps: 50
  weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nadejdatarabukina/927707f3-54e5-4156-b71b-a043cf7f5121
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d16d145cf1763c87_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 70
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 927707f3-54e5-4156-b71b-a043cf7f5121
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 927707f3-54e5-4156-b71b-a043cf7f5121
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

927707f3-54e5-4156-b71b-a043cf7f5121

This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
11.7715 0.0007 1 12.6951
12.6567 0.0034 5 11.2645
2.3684 0.0068 10 0.7841
0.7793 0.0103 15 0.1361
0.0084 0.0137 20 0.2027
0.0001 0.0171 25 0.1864
0.0149 0.0205 30 0.2243
0.0015 0.0240 35 0.1061
0.0021 0.0274 40 0.0988
0.003 0.0308 45 0.0874
0.2611 0.0342 50 0.0859

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for nadejdatarabukina/927707f3-54e5-4156-b71b-a043cf7f5121

Adapter
(245)
this model