MPNet base trained on AllNLI triplets

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("nadshe/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
    'A dog is swimming.',
    'A dog with yellow fur swims, neck deep, in water.',
    'A white dog with a stick in his mouth standing next to a black dog.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.2067
cosine_accuracy@3 0.32
cosine_accuracy@5 0.3567
cosine_accuracy@10 0.4467
cosine_precision@20 0.0297
cosine_precision@100 0.0081
cosine_recall@20 0.5323
cosine_recall@100 0.7159
cosine_ndcg@5 0.2783
cosine_ndcg@10 0.306
cosine_mrr@10 0.2771
cosine_map@100 0.2776

Triplet

Metric Value
cosine_accuracy 0.9275

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 100,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.46 tokens
    • max: 46 tokens
    • min: 6 tokens
    • mean: 12.81 tokens
    • max: 40 tokens
    • min: 5 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss SciFact_cosine_ndcg@10 all-nli-test_cosine_accuracy
0.0008 5 - 0.0808 -
0.0016 10 - 0.0808 -
0.0024 15 - 0.0808 -
0.0032 20 - 0.0809 -
0.004 25 - 0.0812 -
0.0048 30 - 0.0842 -
0.0056 35 - 0.0845 -
0.0064 40 - 0.0892 -
0.0072 45 - 0.0921 -
0.008 50 - 0.0963 -
0.0088 55 - 0.1006 -
0.0096 60 - 0.1050 -
0.0104 65 - 0.1098 -
0.0112 70 - 0.1108 -
0.012 75 - 0.1169 -
0.0128 80 - 0.1291 -
0.0136 85 - 0.1394 -
0.0144 90 - 0.1586 -
0.0152 95 - 0.1747 -
0.016 100 3.1887 0.1873 -
0.0168 105 - 0.1964 -
0.0176 110 - 0.2090 -
0.0184 115 - 0.2237 -
0.0192 120 - 0.2320 -
0.02 125 - 0.2380 -
0.0208 130 - 0.2433 -
0.0216 135 - 0.2513 -
0.0224 140 - 0.2553 -
0.0232 145 - 0.2615 -
0.024 150 - 0.2677 -
0.0248 155 - 0.2718 -
0.0256 160 - 0.2763 -
0.0264 165 - 0.2793 -
0.0272 170 - 0.2838 -
0.028 175 - 0.2883 -
0.0288 180 - 0.2939 -
0.0296 185 - 0.2965 -
0.0304 190 - 0.2998 -
0.0312 195 - 0.3050 -
0.032 200 1.5596 0.3083 -
0.0328 205 - 0.3118 -
0.0336 210 - 0.3177 -
0.0344 215 - 0.3184 -
0.0352 220 - 0.3211 -
0.036 225 - 0.3196 -
0.0368 230 - 0.3216 -
0.0376 235 - 0.3220 -
0.0384 240 - 0.3203 -
0.0392 245 - 0.3233 -
0.04 250 - 0.3228 -
0.0408 255 - 0.3307 -
0.0416 260 - 0.3321 -
0.0424 265 - 0.3357 -
0.0432 270 - 0.3318 -
0.044 275 - 0.3296 -
0.0448 280 - 0.3277 -
0.0456 285 - 0.3316 -
0.0464 290 - 0.3283 -
0.0472 295 - 0.3287 -
0.048 300 1.096 0.3248 -
0.0488 305 - 0.3228 -
0.0496 310 - 0.3227 -
0.0504 315 - 0.3207 -
0.0512 320 - 0.3244 -
0.052 325 - 0.3315 -
0.0528 330 - 0.3342 -
0.0536 335 - 0.3334 -
0.0544 340 - 0.3381 -
0.0552 345 - 0.3380 -
0.056 350 - 0.3464 -
0.0568 355 - 0.3449 -
0.0576 360 - 0.3453 -
0.0584 365 - 0.3423 -
0.0592 370 - 0.3393 -
0.06 375 - 0.3401 -
0.0608 380 - 0.3404 -
0.0616 385 - 0.3416 -
0.0624 390 - 0.3385 -
0.0632 395 - 0.3378 -
0.064 400 1.0 0.3375 -
0.0648 405 - 0.3397 -
0.0656 410 - 0.3362 -
0.0664 415 - 0.3305 -
0.0672 420 - 0.3311 -
0.068 425 - 0.3335 -
0.0688 430 - 0.3367 -
0.0696 435 - 0.3341 -
0.0704 440 - 0.3340 -
0.0712 445 - 0.3351 -
0.072 450 - 0.3373 -
0.0728 455 - 0.3420 -
0.0736 460 - 0.3426 -
0.0744 465 - 0.3410 -
0.0752 470 - 0.3385 -
0.076 475 - 0.3351 -
0.0768 480 - 0.3343 -
0.0776 485 - 0.3365 -
0.0784 490 - 0.3369 -
0.0792 495 - 0.3358 -
0.08 500 0.9284 0.3419 -
0.0808 505 - 0.3440 -
0.0816 510 - 0.3463 -
0.0824 515 - 0.3500 -
0.0832 520 - 0.3520 -
0.084 525 - 0.3555 -
0.0848 530 - 0.3635 -
0.0856 535 - 0.3604 -
0.0864 540 - 0.3620 -
0.0872 545 - 0.3567 -
0.088 550 - 0.3612 -
0.0888 555 - 0.3644 -
0.0896 560 - 0.3684 -
0.0904 565 - 0.3709 -
0.0912 570 - 0.3704 -
0.092 575 - 0.3706 -
0.0928 580 - 0.3716 -
0.0936 585 - 0.3699 -
0.0944 590 - 0.3656 -
0.0952 595 - 0.3662 -
0.096 600 0.8817 0.3647 -
0.0968 605 - 0.3627 -
0.0976 610 - 0.3661 -
0.0984 615 - 0.3755 -
0.0992 620 - 0.3722 -
0.1 625 - 0.3733 -
0.1008 630 - 0.3737 -
0.1016 635 - 0.3653 -
0.1024 640 - 0.3701 -
0.1032 645 - 0.3648 -
0.104 650 - 0.3609 -
0.1048 655 - 0.3570 -
0.1056 660 - 0.3537 -
0.1064 665 - 0.3513 -
0.1072 670 - 0.3595 -
0.108 675 - 0.3689 -
0.1088 680 - 0.3623 -
0.1096 685 - 0.3611 -
0.1104 690 - 0.3703 -
0.1112 695 - 0.3661 -
0.112 700 0.8336 0.3710 -
0.1128 705 - 0.3669 -
0.1136 710 - 0.3678 -
0.1144 715 - 0.3645 -
0.1152 720 - 0.3672 -
0.116 725 - 0.3612 -
0.1168 730 - 0.3633 -
0.1176 735 - 0.3590 -
0.1184 740 - 0.3548 -
0.1192 745 - 0.3446 -
0.12 750 - 0.3410 -
0.1208 755 - 0.3354 -
0.1216 760 - 0.3361 -
0.1224 765 - 0.3320 -
0.1232 770 - 0.3335 -
0.124 775 - 0.3335 -
0.1248 780 - 0.3388 -
0.1256 785 - 0.3351 -
0.1264 790 - 0.3259 -
0.1272 795 - 0.3235 -
0.128 800 0.8156 0.3217 -
0.1288 805 - 0.3264 -
0.1296 810 - 0.3278 -
0.1304 815 - 0.3243 -
0.1312 820 - 0.3256 -
0.132 825 - 0.3334 -
0.1328 830 - 0.3288 -
0.1336 835 - 0.3289 -
0.1344 840 - 0.3312 -
0.1352 845 - 0.3267 -
0.136 850 - 0.3263 -
0.1368 855 - 0.3285 -
0.1376 860 - 0.3285 -
0.1384 865 - 0.3330 -
0.1392 870 - 0.3367 -
0.14 875 - 0.3331 -
0.1408 880 - 0.3351 -
0.1416 885 - 0.3318 -
0.1424 890 - 0.3248 -
0.1432 895 - 0.3162 -
0.144 900 0.7558 0.3186 -
0.1448 905 - 0.3173 -
0.1456 910 - 0.3148 -
0.1464 915 - 0.3147 -
0.1472 920 - 0.3178 -
0.148 925 - 0.3205 -
0.1488 930 - 0.3262 -
0.1496 935 - 0.3231 -
0.1504 940 - 0.3230 -
0.1512 945 - 0.3143 -
0.152 950 - 0.3078 -
0.1528 955 - 0.3119 -
0.1536 960 - 0.3179 -
0.1544 965 - 0.3198 -
0.1552 970 - 0.3164 -
0.156 975 - 0.3114 -
0.1568 980 - 0.3137 -
0.1576 985 - 0.3083 -
0.1584 990 - 0.3077 -
0.1592 995 - 0.3117 -
0.16 1000 0.6718 0.3142 -
0.1608 1005 - 0.3125 -
0.1616 1010 - 0.3177 -
0.1624 1015 - 0.3171 -
0.1632 1020 - 0.3193 -
0.164 1025 - 0.3193 -
0.1648 1030 - 0.3200 -
0.1656 1035 - 0.3267 -
0.1664 1040 - 0.3259 -
0.1672 1045 - 0.3247 -
0.168 1050 - 0.3176 -
0.1688 1055 - 0.3135 -
0.1696 1060 - 0.3118 -
0.1704 1065 - 0.3102 -
0.1712 1070 - 0.3117 -
0.172 1075 - 0.3122 -
0.1728 1080 - 0.3073 -
0.1736 1085 - 0.3113 -
0.1744 1090 - 0.3065 -
0.1752 1095 - 0.3115 -
0.176 1100 0.7212 0.3157 -
0.1768 1105 - 0.3182 -
0.1776 1110 - 0.3198 -
0.1784 1115 - 0.3193 -
0.1792 1120 - 0.3197 -
0.18 1125 - 0.3192 -
0.1808 1130 - 0.3226 -
0.1816 1135 - 0.3247 -
0.1824 1140 - 0.3295 -
0.1832 1145 - 0.3266 -
0.184 1150 - 0.3265 -
0.1848 1155 - 0.3202 -
0.1856 1160 - 0.3207 -
0.1864 1165 - 0.3217 -
0.1872 1170 - 0.3184 -
0.188 1175 - 0.3216 -
0.1888 1180 - 0.3173 -
0.1896 1185 - 0.3197 -
0.1904 1190 - 0.3237 -
0.1912 1195 - 0.3198 -
0.192 1200 0.6501 0.3241 -
0.1928 1205 - 0.3215 -
0.1936 1210 - 0.3176 -
0.1944 1215 - 0.3019 -
0.1952 1220 - 0.2993 -
0.196 1225 - 0.2910 -
0.1968 1230 - 0.2743 -
0.1976 1235 - 0.2801 -
0.1984 1240 - 0.2953 -
0.1992 1245 - 0.2999 -
0.2 1250 - 0.2983 -
0.2008 1255 - 0.2993 -
0.2016 1260 - 0.3001 -
0.2024 1265 - 0.3038 -
0.2032 1270 - 0.3001 -
0.204 1275 - 0.2955 -
0.2048 1280 - 0.2902 -
0.2056 1285 - 0.2897 -
0.2064 1290 - 0.2913 -
0.2072 1295 - 0.2909 -
0.208 1300 0.6612 0.2796 -
0.2088 1305 - 0.2842 -
0.2096 1310 - 0.2841 -
0.2104 1315 - 0.2853 -
0.2112 1320 - 0.2912 -
0.212 1325 - 0.2932 -
0.2128 1330 - 0.2913 -
0.2136 1335 - 0.2950 -
0.2144 1340 - 0.2989 -
0.2152 1345 - 0.3037 -
0.216 1350 - 0.3063 -
0.2168 1355 - 0.3067 -
0.2176 1360 - 0.3024 -
0.2184 1365 - 0.3094 -
0.2192 1370 - 0.3065 -
0.22 1375 - 0.3071 -
0.2208 1380 - 0.3089 -
0.2216 1385 - 0.3133 -
0.2224 1390 - 0.3154 -
0.2232 1395 - 0.3167 -
0.224 1400 0.6329 0.3255 -
0.2248 1405 - 0.3219 -
0.2256 1410 - 0.3139 -
0.2264 1415 - 0.3211 -
0.2272 1420 - 0.3285 -
0.228 1425 - 0.3220 -
0.2288 1430 - 0.3133 -
0.2296 1435 - 0.3126 -
0.2304 1440 - 0.3120 -
0.2312 1445 - 0.3134 -
0.232 1450 - 0.3094 -
0.2328 1455 - 0.3065 -
0.2336 1460 - 0.3119 -
0.2344 1465 - 0.3121 -
0.2352 1470 - 0.3111 -
0.236 1475 - 0.3033 -
0.2368 1480 - 0.2948 -
0.2376 1485 - 0.2926 -
0.2384 1490 - 0.2841 -
0.2392 1495 - 0.2888 -
0.24 1500 0.6895 0.2879 -
0.2408 1505 - 0.2889 -
0.2416 1510 - 0.2943 -
0.2424 1515 - 0.2967 -
0.2432 1520 - 0.2939 -
0.244 1525 - 0.2963 -
0.2448 1530 - 0.2963 -
0.2456 1535 - 0.2967 -
0.2464 1540 - 0.2930 -
0.2472 1545 - 0.2880 -
0.248 1550 - 0.2810 -
0.2488 1555 - 0.2744 -
0.2496 1560 - 0.2779 -
0.2504 1565 - 0.2826 -
0.2512 1570 - 0.2810 -
0.252 1575 - 0.2865 -
0.2528 1580 - 0.2850 -
0.2536 1585 - 0.2894 -
0.2544 1590 - 0.2849 -
0.2552 1595 - 0.2839 -
0.256 1600 0.6213 0.2860 -
0.2568 1605 - 0.2890 -
0.2576 1610 - 0.2899 -
0.2584 1615 - 0.2927 -
0.2592 1620 - 0.2905 -
0.26 1625 - 0.2890 -
0.2608 1630 - 0.2931 -
0.2616 1635 - 0.2947 -
0.2624 1640 - 0.2915 -
0.2632 1645 - 0.2982 -
0.264 1650 - 0.3012 -
0.2648 1655 - 0.3043 -
0.2656 1660 - 0.3034 -
0.2664 1665 - 0.3003 -
0.2672 1670 - 0.2960 -
0.268 1675 - 0.2938 -
0.2688 1680 - 0.2892 -
0.2696 1685 - 0.2846 -
0.2704 1690 - 0.2855 -
0.2712 1695 - 0.2871 -
0.272 1700 0.6172 0.2957 -
0.2728 1705 - 0.3019 -
0.2736 1710 - 0.3011 -
0.2744 1715 - 0.3008 -
0.2752 1720 - 0.2987 -
0.276 1725 - 0.2989 -
0.2768 1730 - 0.3011 -
0.2776 1735 - 0.3032 -
0.2784 1740 - 0.3032 -
0.2792 1745 - 0.2986 -
0.28 1750 - 0.2989 -
0.2808 1755 - 0.2958 -
0.2816 1760 - 0.2974 -
0.2824 1765 - 0.2997 -
0.2832 1770 - 0.3005 -
0.284 1775 - 0.2919 -
0.2848 1780 - 0.2974 -
0.2856 1785 - 0.2990 -
0.2864 1790 - 0.3031 -
0.2872 1795 - 0.3066 -
0.288 1800 0.5874 0.3120 -
0.2888 1805 - 0.3076 -
0.2896 1810 - 0.3066 -
0.2904 1815 - 0.3083 -
0.2912 1820 - 0.3068 -
0.292 1825 - 0.3132 -
0.2928 1830 - 0.3157 -
0.2936 1835 - 0.3158 -
0.2944 1840 - 0.3179 -
0.2952 1845 - 0.3211 -
0.296 1850 - 0.3176 -
0.2968 1855 - 0.3198 -
0.2976 1860 - 0.3252 -
0.2984 1865 - 0.3277 -
0.2992 1870 - 0.3303 -
0.3 1875 - 0.3313 -
0.3008 1880 - 0.3302 -
0.3016 1885 - 0.3351 -
0.3024 1890 - 0.3348 -
0.3032 1895 - 0.3322 -
0.304 1900 0.548 0.3203 -
0.3048 1905 - 0.3118 -
0.3056 1910 - 0.3070 -
0.3064 1915 - 0.3054 -
0.3072 1920 - 0.3030 -
0.308 1925 - 0.3041 -
0.3088 1930 - 0.3064 -
0.3096 1935 - 0.3056 -
0.3104 1940 - 0.3055 -
0.3112 1945 - 0.3066 -
0.312 1950 - 0.3042 -
0.3128 1955 - 0.3055 -
0.3136 1960 - 0.3017 -
0.3144 1965 - 0.3018 -
0.3152 1970 - 0.3059 -
0.316 1975 - 0.3081 -
0.3168 1980 - 0.3073 -
0.3176 1985 - 0.3044 -
0.3184 1990 - 0.3022 -
0.3192 1995 - 0.3014 -
0.32 2000 0.5164 0.2995 -
0.3208 2005 - 0.2968 -
0.3216 2010 - 0.2942 -
0.3224 2015 - 0.2948 -
0.3232 2020 - 0.2946 -
0.324 2025 - 0.2957 -
0.3248 2030 - 0.2884 -
0.3256 2035 - 0.2874 -
0.3264 2040 - 0.2874 -
0.3272 2045 - 0.2901 -
0.328 2050 - 0.2865 -
0.3288 2055 - 0.2840 -
0.3296 2060 - 0.2933 -
0.3304 2065 - 0.3032 -
0.3312 2070 - 0.3053 -
0.332 2075 - 0.3062 -
0.3328 2080 - 0.3075 -
0.3336 2085 - 0.3065 -
0.3344 2090 - 0.3019 -
0.3352 2095 - 0.2960 -
0.336 2100 0.5244 0.2985 -
0.3368 2105 - 0.3055 -
0.3376 2110 - 0.3096 -
0.3384 2115 - 0.3095 -
0.3392 2120 - 0.3105 -
0.34 2125 - 0.3123 -
0.3408 2130 - 0.3130 -
0.3416 2135 - 0.3134 -
0.3424 2140 - 0.3074 -
0.3432 2145 - 0.3073 -
0.344 2150 - 0.3005 -
0.3448 2155 - 0.2961 -
0.3456 2160 - 0.2929 -
0.3464 2165 - 0.2886 -
0.3472 2170 - 0.2876 -
0.348 2175 - 0.2892 -
0.3488 2180 - 0.2875 -
0.3496 2185 - 0.2918 -
0.3504 2190 - 0.2876 -
0.3512 2195 - 0.2843 -
0.352 2200 0.5288 0.2842 -
0.3528 2205 - 0.2853 -
0.3536 2210 - 0.2817 -
0.3544 2215 - 0.2848 -
0.3552 2220 - 0.2820 -
0.356 2225 - 0.2852 -
0.3568 2230 - 0.2891 -
0.3576 2235 - 0.2931 -
0.3584 2240 - 0.2903 -
0.3592 2245 - 0.2921 -
0.36 2250 - 0.2895 -
0.3608 2255 - 0.2836 -
0.3616 2260 - 0.2885 -
0.3624 2265 - 0.2882 -
0.3632 2270 - 0.2877 -
0.364 2275 - 0.2898 -
0.3648 2280 - 0.2925 -
0.3656 2285 - 0.2938 -
0.3664 2290 - 0.3009 -
0.3672 2295 - 0.3021 -
0.368 2300 0.5118 0.3021 -
0.3688 2305 - 0.3014 -
0.3696 2310 - 0.3025 -
0.3704 2315 - 0.3008 -
0.3712 2320 - 0.3054 -
0.372 2325 - 0.3024 -
0.3728 2330 - 0.3023 -
0.3736 2335 - 0.2962 -
0.3744 2340 - 0.2913 -
0.3752 2345 - 0.2899 -
0.376 2350 - 0.2891 -
0.3768 2355 - 0.2936 -
0.3776 2360 - 0.3012 -
0.3784 2365 - 0.2994 -
0.3792 2370 - 0.2973 -
0.38 2375 - 0.2960 -
0.3808 2380 - 0.2949 -
0.3816 2385 - 0.2974 -
0.3824 2390 - 0.3047 -
0.3832 2395 - 0.3046 -
0.384 2400 0.5102 0.3100 -
0.3848 2405 - 0.3107 -
0.3856 2410 - 0.3100 -
0.3864 2415 - 0.3115 -
0.3872 2420 - 0.3038 -
0.388 2425 - 0.3011 -
0.3888 2430 - 0.2999 -
0.3896 2435 - 0.3033 -
0.3904 2440 - 0.3069 -
0.3912 2445 - 0.3010 -
0.392 2450 - 0.2930 -
0.3928 2455 - 0.2887 -
0.3936 2460 - 0.2870 -
0.3944 2465 - 0.2865 -
0.3952 2470 - 0.2903 -
0.396 2475 - 0.2956 -
0.3968 2480 - 0.3003 -
0.3976 2485 - 0.2986 -
0.3984 2490 - 0.3049 -
0.3992 2495 - 0.3099 -
0.4 2500 0.5109 0.3056 -
0.4008 2505 - 0.3057 -
0.4016 2510 - 0.3079 -
0.4024 2515 - 0.3152 -
0.4032 2520 - 0.3178 -
0.404 2525 - 0.3098 -
0.4048 2530 - 0.3030 -
0.4056 2535 - 0.3005 -
0.4064 2540 - 0.2978 -
0.4072 2545 - 0.3029 -
0.408 2550 - 0.3086 -
0.4088 2555 - 0.3082 -
0.4096 2560 - 0.3064 -
0.4104 2565 - 0.3042 -
0.4112 2570 - 0.3069 -
0.412 2575 - 0.3041 -
0.4128 2580 - 0.3049 -
0.4136 2585 - 0.3084 -
0.4144 2590 - 0.3076 -
0.4152 2595 - 0.3055 -
0.416 2600 0.5027 0.3031 -
0.4168 2605 - 0.2969 -
0.4176 2610 - 0.2962 -
0.4184 2615 - 0.2968 -
0.4192 2620 - 0.2986 -
0.42 2625 - 0.2966 -
0.4208 2630 - 0.2940 -
0.4216 2635 - 0.2896 -
0.4224 2640 - 0.2856 -
0.4232 2645 - 0.2872 -
0.424 2650 - 0.2925 -
0.4248 2655 - 0.2933 -
0.4256 2660 - 0.2924 -
0.4264 2665 - 0.2915 -
0.4272 2670 - 0.2913 -
0.428 2675 - 0.2930 -
0.4288 2680 - 0.2931 -
0.4296 2685 - 0.2882 -
0.4304 2690 - 0.2917 -
0.4312 2695 - 0.2934 -
0.432 2700 0.5856 0.2924 -
0.4328 2705 - 0.2934 -
0.4336 2710 - 0.2925 -
0.4344 2715 - 0.2916 -
0.4352 2720 - 0.2968 -
0.436 2725 - 0.2964 -
0.4368 2730 - 0.2993 -
0.4376 2735 - 0.3074 -
0.4384 2740 - 0.3133 -
0.4392 2745 - 0.3136 -
0.44 2750 - 0.3142 -
0.4408 2755 - 0.3128 -
0.4416 2760 - 0.3129 -
0.4424 2765 - 0.3098 -
0.4432 2770 - 0.3068 -
0.444 2775 - 0.3061 -
0.4448 2780 - 0.3100 -
0.4456 2785 - 0.3115 -
0.4464 2790 - 0.3097 -
0.4472 2795 - 0.3065 -
0.448 2800 0.4848 0.2986 -
0.4488 2805 - 0.2965 -
0.4496 2810 - 0.2952 -
0.4504 2815 - 0.2939 -
0.4512 2820 - 0.2896 -
0.452 2825 - 0.2875 -
0.4528 2830 - 0.2868 -
0.4536 2835 - 0.2880 -
0.4544 2840 - 0.2863 -
0.4552 2845 - 0.2841 -
0.456 2850 - 0.2838 -
0.4568 2855 - 0.2887 -
0.4576 2860 - 0.2904 -
0.4584 2865 - 0.2913 -
0.4592 2870 - 0.2901 -
0.46 2875 - 0.2885 -
0.4608 2880 - 0.2844 -
0.4616 2885 - 0.2840 -
0.4624 2890 - 0.2875 -
0.4632 2895 - 0.2890 -
0.464 2900 0.5037 0.2849 -
0.4648 2905 - 0.2841 -
0.4656 2910 - 0.2830 -
0.4664 2915 - 0.2883 -
0.4672 2920 - 0.2884 -
0.468 2925 - 0.2875 -
0.4688 2930 - 0.2874 -
0.4696 2935 - 0.2841 -
0.4704 2940 - 0.2830 -
0.4712 2945 - 0.2727 -
0.472 2950 - 0.2761 -
0.4728 2955 - 0.2796 -
0.4736 2960 - 0.2802 -
0.4744 2965 - 0.2790 -
0.4752 2970 - 0.2809 -
0.476 2975 - 0.2767 -
0.4768 2980 - 0.2782 -
0.4776 2985 - 0.2848 -
0.4784 2990 - 0.2834 -
0.4792 2995 - 0.2868 -
0.48 3000 0.5094 0.2943 -
0.4808 3005 - 0.3007 -
0.4816 3010 - 0.3016 -
0.4824 3015 - 0.3003 -
0.4832 3020 - 0.2994 -
0.484 3025 - 0.2926 -
0.4848 3030 - 0.2954 -
0.4856 3035 - 0.2879 -
0.4864 3040 - 0.2907 -
0.4872 3045 - 0.2937 -
0.488 3050 - 0.2977 -
0.4888 3055 - 0.3024 -
0.4896 3060 - 0.3057 -
0.4904 3065 - 0.3096 -
0.4912 3070 - 0.3142 -
0.492 3075 - 0.3188 -
0.4928 3080 - 0.3221 -
0.4936 3085 - 0.3197 -
0.4944 3090 - 0.3246 -
0.4952 3095 - 0.3210 -
0.496 3100 0.5108 0.3154 -
0.4968 3105 - 0.3100 -
0.4976 3110 - 0.3059 -
0.4984 3115 - 0.3065 -
0.4992 3120 - 0.3058 -
0.5 3125 - 0.3009 -
0.5008 3130 - 0.2962 -
0.5016 3135 - 0.2941 -
0.5024 3140 - 0.2923 -
0.5032 3145 - 0.2899 -
0.504 3150 - 0.2921 -
0.5048 3155 - 0.2904 -
0.5056 3160 - 0.2919 -
0.5064 3165 - 0.2934 -
0.5072 3170 - 0.2950 -
0.508 3175 - 0.2865 -
0.5088 3180 - 0.2802 -
0.5096 3185 - 0.2801 -
0.5104 3190 - 0.2801 -
0.5112 3195 - 0.2829 -
0.512 3200 0.4271 0.2851 -
0.5128 3205 - 0.2844 -
0.5136 3210 - 0.2849 -
0.5144 3215 - 0.2852 -
0.5152 3220 - 0.2867 -
0.516 3225 - 0.2896 -
0.5168 3230 - 0.2913 -
0.5176 3235 - 0.2895 -
0.5184 3240 - 0.2864 -
0.5192 3245 - 0.2799 -
0.52 3250 - 0.2726 -
0.5208 3255 - 0.2698 -
0.5216 3260 - 0.2628 -
0.5224 3265 - 0.2595 -
0.5232 3270 - 0.2574 -
0.524 3275 - 0.2549 -
0.5248 3280 - 0.2545 -
0.5256 3285 - 0.2548 -
0.5264 3290 - 0.2526 -
0.5272 3295 - 0.2558 -
0.528 3300 0.4451 0.2658 -
0.5288 3305 - 0.2670 -
0.5296 3310 - 0.2641 -
0.5304 3315 - 0.2622 -
0.5312 3320 - 0.2696 -
0.532 3325 - 0.2733 -
0.5328 3330 - 0.2711 -
0.5336 3335 - 0.2737 -
0.5344 3340 - 0.2765 -
0.5352 3345 - 0.2772 -
0.536 3350 - 0.2715 -
0.5368 3355 - 0.2716 -
0.5376 3360 - 0.2712 -
0.5384 3365 - 0.2718 -
0.5392 3370 - 0.2730 -
0.54 3375 - 0.2706 -
0.5408 3380 - 0.2737 -
0.5416 3385 - 0.2740 -
0.5424 3390 - 0.2763 -
0.5432 3395 - 0.2770 -
0.544 3400 0.4613 0.2751 -
0.5448 3405 - 0.2686 -
0.5456 3410 - 0.2760 -
0.5464 3415 - 0.2757 -
0.5472 3420 - 0.2739 -
0.548 3425 - 0.2684 -
0.5488 3430 - 0.2690 -
0.5496 3435 - 0.2718 -
0.5504 3440 - 0.2725 -
0.5512 3445 - 0.2757 -
0.552 3450 - 0.2769 -
0.5528 3455 - 0.2787 -
0.5536 3460 - 0.2836 -
0.5544 3465 - 0.2799 -
0.5552 3470 - 0.2861 -
0.556 3475 - 0.2848 -
0.5568 3480 - 0.2857 -
0.5576 3485 - 0.2886 -
0.5584 3490 - 0.2900 -
0.5592 3495 - 0.2878 -
0.56 3500 0.4464 0.2871 -
0.5608 3505 - 0.2880 -
0.5616 3510 - 0.2917 -
0.5624 3515 - 0.2946 -
0.5632 3520 - 0.2975 -
0.564 3525 - 0.3024 -
0.5648 3530 - 0.3040 -
0.5656 3535 - 0.3041 -
0.5664 3540 - 0.3018 -
0.5672 3545 - 0.3042 -
0.568 3550 - 0.3065 -
0.5688 3555 - 0.3033 -
0.5696 3560 - 0.3025 -
0.5704 3565 - 0.2974 -
0.5712 3570 - 0.2913 -
0.572 3575 - 0.2931 -
0.5728 3580 - 0.2912 -
0.5736 3585 - 0.2916 -
0.5744 3590 - 0.2905 -
0.5752 3595 - 0.2932 -
0.576 3600 0.3953 0.2975 -
0.5768 3605 - 0.3016 -
0.5776 3610 - 0.3042 -
0.5784 3615 - 0.3030 -
0.5792 3620 - 0.3001 -
0.58 3625 - 0.3038 -
0.5808 3630 - 0.3019 -
0.5816 3635 - 0.2984 -
0.5824 3640 - 0.3040 -
0.5832 3645 - 0.3044 -
0.584 3650 - 0.3106 -
0.5848 3655 - 0.3145 -
0.5856 3660 - 0.3146 -
0.5864 3665 - 0.3196 -
0.5872 3670 - 0.3146 -
0.588 3675 - 0.3112 -
0.5888 3680 - 0.3147 -
0.5896 3685 - 0.3157 -
0.5904 3690 - 0.3189 -
0.5912 3695 - 0.3219 -
0.592 3700 0.4502 0.3216 -
0.5928 3705 - 0.3222 -
0.5936 3710 - 0.3222 -
0.5944 3715 - 0.3211 -
0.5952 3720 - 0.3185 -
0.596 3725 - 0.3128 -
0.5968 3730 - 0.3086 -
0.5976 3735 - 0.3065 -
0.5984 3740 - 0.3077 -
0.5992 3745 - 0.3133 -
0.6 3750 - 0.3124 -
0.6008 3755 - 0.3110 -
0.6016 3760 - 0.3107 -
0.6024 3765 - 0.3106 -
0.6032 3770 - 0.3104 -
0.604 3775 - 0.3119 -
0.6048 3780 - 0.3123 -
0.6056 3785 - 0.3089 -
0.6064 3790 - 0.3054 -
0.6072 3795 - 0.3038 -
0.608 3800 0.4307 0.2960 -
0.6088 3805 - 0.2972 -
0.6096 3810 - 0.2969 -
0.6104 3815 - 0.2930 -
0.6112 3820 - 0.2930 -
0.612 3825 - 0.2946 -
0.6128 3830 - 0.2963 -
0.6136 3835 - 0.2953 -
0.6144 3840 - 0.2997 -
0.6152 3845 - 0.2998 -
0.616 3850 - 0.2997 -
0.6168 3855 - 0.3048 -
0.6176 3860 - 0.3087 -
0.6184 3865 - 0.3075 -
0.6192 3870 - 0.3091 -
0.62 3875 - 0.3099 -
0.6208 3880 - 0.3087 -
0.6216 3885 - 0.3115 -
0.6224 3890 - 0.3113 -
0.6232 3895 - 0.3041 -
0.624 3900 0.4364 0.3071 -
0.6248 3905 - 0.3065 -
0.6256 3910 - 0.3092 -
0.6264 3915 - 0.3088 -
0.6272 3920 - 0.3089 -
0.628 3925 - 0.3055 -
0.6288 3930 - 0.3051 -
0.6296 3935 - 0.3079 -
0.6304 3940 - 0.3090 -
0.6312 3945 - 0.3124 -
0.632 3950 - 0.3133 -
0.6328 3955 - 0.3125 -
0.6336 3960 - 0.3140 -
0.6344 3965 - 0.3158 -
0.6352 3970 - 0.3179 -
0.636 3975 - 0.3204 -
0.6368 3980 - 0.3171 -
0.6376 3985 - 0.3167 -
0.6384 3990 - 0.3124 -
0.6392 3995 - 0.3123 -
0.64 4000 0.4573 0.3126 -
0.6408 4005 - 0.3125 -
0.6416 4010 - 0.3078 -
0.6424 4015 - 0.3000 -
0.6432 4020 - 0.3003 -
0.644 4025 - 0.2964 -
0.6448 4030 - 0.3002 -
0.6456 4035 - 0.2960 -
0.6464 4040 - 0.2958 -
0.6472 4045 - 0.2967 -
0.648 4050 - 0.2923 -
0.6488 4055 - 0.2903 -
0.6496 4060 - 0.2927 -
0.6504 4065 - 0.2940 -
0.6512 4070 - 0.2934 -
0.652 4075 - 0.2928 -
0.6528 4080 - 0.2934 -
0.6536 4085 - 0.2959 -
0.6544 4090 - 0.2935 -
0.6552 4095 - 0.2979 -
0.656 4100 0.3874 0.2957 -
0.6568 4105 - 0.2982 -
0.6576 4110 - 0.2951 -
0.6584 4115 - 0.2949 -
0.6592 4120 - 0.2958 -
0.66 4125 - 0.2945 -
0.6608 4130 - 0.2992 -
0.6616 4135 - 0.3004 -
0.6624 4140 - 0.3005 -
0.6632 4145 - 0.3035 -
0.664 4150 - 0.3017 -
0.6648 4155 - 0.3013 -
0.6656 4160 - 0.3009 -
0.6664 4165 - 0.3042 -
0.6672 4170 - 0.3046 -
0.668 4175 - 0.3074 -
0.6688 4180 - 0.3086 -
0.6696 4185 - 0.3085 -
0.6704 4190 - 0.3075 -
0.6712 4195 - 0.3063 -
0.672 4200 0.3758 0.3062 -
0.6728 4205 - 0.3050 -
0.6736 4210 - 0.3039 -
0.6744 4215 - 0.3009 -
0.6752 4220 - 0.3005 -
0.676 4225 - 0.3010 -
0.6768 4230 - 0.3012 -
0.6776 4235 - 0.3018 -
0.6784 4240 - 0.2989 -
0.6792 4245 - 0.2989 -
0.68 4250 - 0.2993 -
0.6808 4255 - 0.2998 -
0.6816 4260 - 0.3003 -
0.6824 4265 - 0.3015 -
0.6832 4270 - 0.3020 -
0.684 4275 - 0.3013 -
0.6848 4280 - 0.3031 -
0.6856 4285 - 0.3021 -
0.6864 4290 - 0.3025 -
0.6872 4295 - 0.2973 -
0.688 4300 0.4139 0.2952 -
0.6888 4305 - 0.2916 -
0.6896 4310 - 0.2915 -
0.6904 4315 - 0.2951 -
0.6912 4320 - 0.2929 -
0.692 4325 - 0.2929 -
0.6928 4330 - 0.2949 -
0.6936 4335 - 0.2977 -
0.6944 4340 - 0.2991 -
0.6952 4345 - 0.3009 -
0.696 4350 - 0.2996 -
0.6968 4355 - 0.2991 -
0.6976 4360 - 0.2984 -
0.6984 4365 - 0.3014 -
0.6992 4370 - 0.3049 -
0.7 4375 - 0.3024 -
0.7008 4380 - 0.3047 -
0.7016 4385 - 0.3070 -
0.7024 4390 - 0.3075 -
0.7032 4395 - 0.3067 -
0.704 4400 0.3769 0.3050 -
0.7048 4405 - 0.3106 -
0.7056 4410 - 0.3107 -
0.7064 4415 - 0.3140 -
0.7072 4420 - 0.3121 -
0.708 4425 - 0.3121 -
0.7088 4430 - 0.3171 -
0.7096 4435 - 0.3189 -
0.7104 4440 - 0.3188 -
0.7112 4445 - 0.3181 -
0.712 4450 - 0.3188 -
0.7128 4455 - 0.3189 -
0.7136 4460 - 0.3185 -
0.7144 4465 - 0.3158 -
0.7152 4470 - 0.3128 -
0.716 4475 - 0.3072 -
0.7168 4480 - 0.3030 -
0.7176 4485 - 0.3044 -
0.7184 4490 - 0.3044 -
0.7192 4495 - 0.3034 -
0.72 4500 0.427 0.3025 -
0.7208 4505 - 0.3048 -
0.7216 4510 - 0.3053 -
0.7224 4515 - 0.3091 -
0.7232 4520 - 0.3091 -
0.724 4525 - 0.3083 -
0.7248 4530 - 0.3110 -
0.7256 4535 - 0.3081 -
0.7264 4540 - 0.3051 -
0.7272 4545 - 0.3051 -
0.728 4550 - 0.3027 -
0.7288 4555 - 0.3012 -
0.7296 4560 - 0.3024 -
0.7304 4565 - 0.3036 -
0.7312 4570 - 0.3042 -
0.732 4575 - 0.3066 -
0.7328 4580 - 0.3074 -
0.7336 4585 - 0.3081 -
0.7344 4590 - 0.3097 -
0.7352 4595 - 0.3098 -
0.736 4600 0.3701 0.3078 -
0.7368 4605 - 0.3095 -
0.7376 4610 - 0.3148 -
0.7384 4615 - 0.3189 -
0.7392 4620 - 0.3231 -
0.74 4625 - 0.3210 -
0.7408 4630 - 0.3210 -
0.7416 4635 - 0.3185 -
0.7424 4640 - 0.3180 -
0.7432 4645 - 0.3178 -
0.744 4650 - 0.3180 -
0.7448 4655 - 0.3163 -
0.7456 4660 - 0.3144 -
0.7464 4665 - 0.3168 -
0.7472 4670 - 0.3180 -
0.748 4675 - 0.3157 -
0.7488 4680 - 0.3146 -
0.7496 4685 - 0.3115 -
0.7504 4690 - 0.3173 -
0.7512 4695 - 0.3191 -
0.752 4700 0.4066 0.3157 -
0.7528 4705 - 0.3165 -
0.7536 4710 - 0.3150 -
0.7544 4715 - 0.3104 -
0.7552 4720 - 0.3097 -
0.756 4725 - 0.3108 -
0.7568 4730 - 0.3105 -
0.7576 4735 - 0.3096 -
0.7584 4740 - 0.3088 -
0.7592 4745 - 0.3098 -
0.76 4750 - 0.3107 -
0.7608 4755 - 0.3105 -
0.7616 4760 - 0.3056 -
0.7624 4765 - 0.3051 -
0.7632 4770 - 0.3039 -
0.764 4775 - 0.3018 -
0.7648 4780 - 0.3010 -
0.7656 4785 - 0.3043 -
0.7664 4790 - 0.3057 -
0.7672 4795 - 0.3052 -
0.768 4800 0.4148 0.3051 -
0.7688 4805 - 0.3027 -
0.7696 4810 - 0.3038 -
0.7704 4815 - 0.3053 -
0.7712 4820 - 0.3033 -
0.772 4825 - 0.3010 -
0.7728 4830 - 0.3012 -
0.7736 4835 - 0.3002 -
0.7744 4840 - 0.3012 -
0.7752 4845 - 0.3004 -
0.776 4850 - 0.3023 -
0.7768 4855 - 0.3035 -
0.7776 4860 - 0.3033 -
0.7784 4865 - 0.3039 -
0.7792 4870 - 0.3047 -
0.78 4875 - 0.3016 -
0.7808 4880 - 0.3015 -
0.7816 4885 - 0.3022 -
0.7824 4890 - 0.3036 -
0.7832 4895 - 0.3038 -
0.784 4900 0.4476 0.3046 -
0.7848 4905 - 0.3042 -
0.7856 4910 - 0.3056 -
0.7864 4915 - 0.3098 -
0.7872 4920 - 0.3131 -
0.788 4925 - 0.3145 -
0.7888 4930 - 0.3132 -
0.7896 4935 - 0.3127 -
0.7904 4940 - 0.3108 -
0.7912 4945 - 0.3097 -
0.792 4950 - 0.3120 -
0.7928 4955 - 0.3108 -
0.7936 4960 - 0.3100 -
0.7944 4965 - 0.3085 -
0.7952 4970 - 0.3084 -
0.796 4975 - 0.3114 -
0.7968 4980 - 0.3095 -
0.7976 4985 - 0.3087 -
0.7984 4990 - 0.3078 -
0.7992 4995 - 0.3076 -
0.8 5000 0.352 0.3080 -
0.8008 5005 - 0.3129 -
0.8016 5010 - 0.3111 -
0.8024 5015 - 0.3116 -
0.8032 5020 - 0.3061 -
0.804 5025 - 0.3081 -
0.8048 5030 - 0.3081 -
0.8056 5035 - 0.3068 -
0.8064 5040 - 0.3069 -
0.8072 5045 - 0.3063 -
0.808 5050 - 0.3044 -
0.8088 5055 - 0.3044 -
0.8096 5060 - 0.3045 -
0.8104 5065 - 0.3039 -
0.8112 5070 - 0.3045 -
0.812 5075 - 0.3045 -
0.8128 5080 - 0.3065 -
0.8136 5085 - 0.3065 -
0.8144 5090 - 0.3078 -
0.8152 5095 - 0.3075 -
0.816 5100 0.3847 0.3084 -
0.8168 5105 - 0.3080 -
0.8176 5110 - 0.3076 -
0.8184 5115 - 0.3072 -
0.8192 5120 - 0.3064 -
0.82 5125 - 0.3025 -
0.8208 5130 - 0.3020 -
0.8216 5135 - 0.3026 -
0.8224 5140 - 0.3023 -
0.8232 5145 - 0.3028 -
0.824 5150 - 0.3022 -
0.8248 5155 - 0.3026 -
0.8256 5160 - 0.3030 -
0.8264 5165 - 0.3031 -
0.8272 5170 - 0.3026 -
0.828 5175 - 0.3048 -
0.8288 5180 - 0.3029 -
0.8296 5185 - 0.3041 -
0.8304 5190 - 0.3061 -
0.8312 5195 - 0.3089 -
0.832 5200 0.3878 0.3092 -
0.8328 5205 - 0.3084 -
0.8336 5210 - 0.3098 -
0.8344 5215 - 0.3073 -
0.8352 5220 - 0.3069 -
0.836 5225 - 0.3081 -
0.8368 5230 - 0.3092 -
0.8376 5235 - 0.3077 -
0.8384 5240 - 0.3066 -
0.8392 5245 - 0.3078 -
0.84 5250 - 0.3108 -
0.8408 5255 - 0.3113 -
0.8416 5260 - 0.3110 -
0.8424 5265 - 0.3108 -
0.8432 5270 - 0.3090 -
0.844 5275 - 0.3089 -
0.8448 5280 - 0.3102 -
0.8456 5285 - 0.3095 -
0.8464 5290 - 0.3096 -
0.8472 5295 - 0.3097 -
0.848 5300 0.3869 0.3099 -
0.8488 5305 - 0.3099 -
0.8496 5310 - 0.3086 -
0.8504 5315 - 0.3089 -
0.8512 5320 - 0.3088 -
0.852 5325 - 0.3085 -
0.8528 5330 - 0.3084 -
0.8536 5335 - 0.3076 -
0.8544 5340 - 0.3076 -
0.8552 5345 - 0.3078 -
0.856 5350 - 0.3087 -
0.8568 5355 - 0.3090 -
0.8576 5360 - 0.3102 -
0.8584 5365 - 0.3106 -
0.8592 5370 - 0.3091 -
0.86 5375 - 0.3080 -
0.8608 5380 - 0.3072 -
0.8616 5385 - 0.3057 -
0.8624 5390 - 0.3039 -
0.8632 5395 - 0.3019 -
0.864 5400 0.3728 0.3016 -
0.8648 5405 - 0.3041 -
0.8656 5410 - 0.3017 -
0.8664 5415 - 0.3003 -
0.8672 5420 - 0.2972 -
0.868 5425 - 0.2953 -
0.8688 5430 - 0.2972 -
0.8696 5435 - 0.2979 -
0.8704 5440 - 0.2992 -
0.8712 5445 - 0.3000 -
0.872 5450 - 0.2999 -
0.8728 5455 - 0.3013 -
0.8736 5460 - 0.3037 -
0.8744 5465 - 0.3077 -
0.8752 5470 - 0.3096 -
0.876 5475 - 0.3105 -
0.8768 5480 - 0.3139 -
0.8776 5485 - 0.3161 -
0.8784 5490 - 0.3156 -
0.8792 5495 - 0.3157 -
0.88 5500 0.3655 0.3166 -
0.8808 5505 - 0.3153 -
0.8816 5510 - 0.3155 -
0.8824 5515 - 0.3143 -
0.8832 5520 - 0.3153 -
0.884 5525 - 0.3153 -
0.8848 5530 - 0.3162 -
0.8856 5535 - 0.3168 -
0.8864 5540 - 0.3167 -
0.8872 5545 - 0.3175 -
0.888 5550 - 0.3170 -
0.8888 5555 - 0.3165 -
0.8896 5560 - 0.3160 -
0.8904 5565 - 0.3160 -
0.8912 5570 - 0.3141 -
0.892 5575 - 0.3140 -
0.8928 5580 - 0.3121 -
0.8936 5585 - 0.3126 -
0.8944 5590 - 0.3112 -
0.8952 5595 - 0.3111 -
0.896 5600 0.3631 0.3104 -
0.8968 5605 - 0.3080 -
0.8976 5610 - 0.3075 -
0.8984 5615 - 0.3066 -
0.8992 5620 - 0.3067 -
0.9 5625 - 0.3061 -
0.9008 5630 - 0.3061 -
0.9016 5635 - 0.3094 -
0.9024 5640 - 0.3087 -
0.9032 5645 - 0.3089 -
0.904 5650 - 0.3083 -
0.9048 5655 - 0.3088 -
0.9056 5660 - 0.3090 -
0.9064 5665 - 0.3109 -
0.9072 5670 - 0.3098 -
0.908 5675 - 0.3095 -
0.9088 5680 - 0.3098 -
0.9096 5685 - 0.3103 -
0.9104 5690 - 0.3103 -
0.9112 5695 - 0.3081 -
0.912 5700 0.3801 0.3091 -
0.9128 5705 - 0.3081 -
0.9136 5710 - 0.3060 -
0.9144 5715 - 0.3069 -
0.9152 5720 - 0.3073 -
0.916 5725 - 0.3082 -
0.9168 5730 - 0.3092 -
0.9176 5735 - 0.3088 -
0.9184 5740 - 0.3079 -
0.9192 5745 - 0.3068 -
0.92 5750 - 0.3068 -
0.9208 5755 - 0.3101 -
0.9216 5760 - 0.3071 -
0.9224 5765 - 0.3074 -
0.9232 5770 - 0.3095 -
0.924 5775 - 0.3083 -
0.9248 5780 - 0.3071 -
0.9256 5785 - 0.3069 -
0.9264 5790 - 0.3070 -
0.9272 5795 - 0.3062 -
0.928 5800 0.3622 0.3054 -
0.9288 5805 - 0.3075 -
0.9296 5810 - 0.3076 -
0.9304 5815 - 0.3075 -
0.9312 5820 - 0.3069 -
0.932 5825 - 0.3059 -
0.9328 5830 - 0.3073 -
0.9336 5835 - 0.3087 -
0.9344 5840 - 0.3098 -
0.9352 5845 - 0.3115 -
0.936 5850 - 0.3101 -
0.9368 5855 - 0.3098 -
0.9376 5860 - 0.3095 -
0.9384 5865 - 0.3085 -
0.9392 5870 - 0.3103 -
0.94 5875 - 0.3104 -
0.9408 5880 - 0.3088 -
0.9416 5885 - 0.3069 -
0.9424 5890 - 0.3089 -
0.9432 5895 - 0.3082 -
0.944 5900 0.3554 0.3071 -
0.9448 5905 - 0.3062 -
0.9456 5910 - 0.3069 -
0.9464 5915 - 0.3059 -
0.9472 5920 - 0.3064 -
0.948 5925 - 0.3057 -
0.9488 5930 - 0.3079 -
0.9496 5935 - 0.3072 -
0.9504 5940 - 0.3085 -
0.9512 5945 - 0.3085 -
0.952 5950 - 0.3100 -
0.9528 5955 - 0.3076 -
0.9536 5960 - 0.3063 -
0.9544 5965 - 0.3060 -
0.9552 5970 - 0.3082 -
0.956 5975 - 0.3065 -
0.9568 5980 - 0.3069 -
0.9576 5985 - 0.3065 -
0.9584 5990 - 0.3059 -
0.9592 5995 - 0.3055 -
0.96 6000 0.3835 0.3055 -
0.9608 6005 - 0.3062 -
0.9616 6010 - 0.3045 -
0.9624 6015 - 0.3046 -
0.9632 6020 - 0.3037 -
0.964 6025 - 0.3036 -
0.9648 6030 - 0.3047 -
0.9656 6035 - 0.3049 -
0.9664 6040 - 0.3054 -
0.9672 6045 - 0.3056 -
0.968 6050 - 0.3058 -
0.9688 6055 - 0.3068 -
0.9696 6060 - 0.3061 -
0.9704 6065 - 0.3049 -
0.9712 6070 - 0.3055 -
0.972 6075 - 0.3051 -
0.9728 6080 - 0.3051 -
0.9736 6085 - 0.3054 -
0.9744 6090 - 0.3054 -
0.9752 6095 - 0.3049 -
0.976 6100 0.3748 0.3049 -
0.9768 6105 - 0.3032 -
0.9776 6110 - 0.3045 -
0.9784 6115 - 0.3045 -
0.9792 6120 - 0.3045 -
0.98 6125 - 0.3045 -
0.9808 6130 - 0.3059 -
0.9816 6135 - 0.3059 -
0.9824 6140 - 0.3049 -
0.9832 6145 - 0.3061 -
0.984 6150 - 0.3061 -
0.9848 6155 - 0.3061 -
0.9856 6160 - 0.3060 -
0.9864 6165 - 0.3060 -
0.9872 6170 - 0.3060 -
0.988 6175 - 0.3061 -
0.9888 6180 - 0.3059 -
0.9896 6185 - 0.3047 -
0.9904 6190 - 0.3060 -
0.9912 6195 - 0.3060 -
0.992 6200 0.1938 0.3059 -
0.9928 6205 - 0.3060 -
0.9936 6210 - 0.3060 -
0.9944 6215 - 0.3060 -
0.9952 6220 - 0.3060 -
0.996 6225 - 0.3060 -
0.9968 6230 - 0.3060 -
0.9976 6235 - 0.3060 -
0.9984 6240 - 0.3060 -
0.9992 6245 - 0.3047 -
1.0 6250 - 0.3060 -
-1 -1 - - 0.9275

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
13
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nadshe/mpnet-base-all-nli-triplet

Finetuned
(72)
this model

Dataset used to train nadshe/mpnet-base-all-nli-triplet

Evaluation results