prox-doc-Llama-3.2-3B
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3655
- Accuracy: 0.8328
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 1.2404 | 0.4912 |
0.6571 | 0.1002 | 502 | 0.7007 | 0.6618 |
0.4499 | 0.2003 | 1004 | 0.4616 | 0.7799 |
0.4078 | 0.3005 | 1506 | 0.4103 | 0.8091 |
0.3714 | 0.4006 | 2008 | 0.3913 | 0.8154 |
0.3897 | 0.5008 | 2510 | 0.3780 | 0.8256 |
0.3565 | 0.6010 | 3012 | 0.3748 | 0.8275 |
0.3413 | 0.7011 | 3514 | 0.3726 | 0.8282 |
0.3325 | 0.8013 | 4016 | 0.3667 | 0.8344 |
0.3722 | 0.9014 | 4518 | 0.3655 | 0.8328 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.4.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for naive-puzzle/prox-doc-Llama-3.2-3B
Base model
meta-llama/Llama-3.2-3B