SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_sm
- SetFitABSA Aspect Model: najwaa/absa-combined-p2-aspect
- SetFitABSA Polarity Model: najwaa/absa-combined-p2-polarity
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the ๐ค Hub
model = AbsaModel.from_pretrained(
"najwaa/absa-combined-p2-aspect",
"najwaa/absa-combined-p2-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 17.9094 | 52 |
Label | Training Sample Count |
---|---|
no aspect | 524 |
aspect | 480 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.3707 | - |
0.0006 | 10 | - | 0.3251 |
0.0013 | 20 | - | 0.3248 |
0.0019 | 30 | - | 0.3243 |
0.0025 | 40 | - | 0.3235 |
0.0032 | 50 | 0.3447 | 0.3225 |
0.0038 | 60 | - | 0.3213 |
0.0044 | 70 | - | 0.3199 |
0.0051 | 80 | - | 0.3182 |
0.0057 | 90 | - | 0.3164 |
0.0063 | 100 | 0.3396 | 0.3144 |
0.0070 | 110 | - | 0.3122 |
0.0076 | 120 | - | 0.3098 |
0.0082 | 130 | - | 0.3074 |
0.0089 | 140 | - | 0.3049 |
0.0095 | 150 | 0.3198 | 0.3022 |
0.0101 | 160 | - | 0.2991 |
0.0108 | 170 | - | 0.2960 |
0.0114 | 180 | - | 0.2928 |
0.0120 | 190 | - | 0.2894 |
0.0126 | 200 | 0.3344 | 0.2860 |
0.0133 | 210 | - | 0.2826 |
0.0139 | 220 | - | 0.2797 |
0.0145 | 230 | - | 0.2767 |
0.0152 | 240 | - | 0.2738 |
0.0158 | 250 | 0.2961 | 0.2712 |
0.0164 | 260 | - | 0.2696 |
0.0171 | 270 | - | 0.2679 |
0.0177 | 280 | - | 0.2661 |
0.0183 | 290 | - | 0.2642 |
0.0190 | 300 | 0.2741 | 0.2625 |
0.0196 | 310 | - | 0.2609 |
0.0202 | 320 | - | 0.2598 |
0.0209 | 330 | - | 0.2592 |
0.0215 | 340 | - | 0.2587 |
0.0221 | 350 | 0.2744 | 0.2584 |
0.0228 | 360 | - | 0.2582 |
0.0234 | 370 | - | 0.2582 |
0.0240 | 380 | - | 0.2584 |
0.0247 | 390 | - | 0.2583 |
0.0253 | 400 | 0.2679 | 0.2583 |
0.0259 | 410 | - | 0.2584 |
0.0266 | 420 | - | 0.2584 |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- spaCy: 3.7.5
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 622
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for najwaa/absa-combined-p2-aspect
Base model
sentence-transformers/all-MiniLM-L6-v2