SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_sm
- SetFitABSA Aspect Model: najwaa/absa-laptops-aspect-p2
- SetFitABSA Polarity Model: setfit-absa-polarity
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the ๐ค Hub
model = AbsaModel.from_pretrained(
"najwaa/absa-laptops-aspect-p2",
"setfit-absa-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 18.3046 | 52 |
Label | Training Sample Count |
---|---|
no aspect | 341 |
aspect | 263 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2288 | - |
0.0017 | 10 | - | 0.3073 |
0.0034 | 20 | - | 0.3065 |
0.0052 | 30 | - | 0.3052 |
0.0069 | 40 | - | 0.3034 |
0.0086 | 50 | 0.3393 | 0.3011 |
0.0103 | 60 | - | 0.2984 |
0.0120 | 70 | - | 0.2954 |
0.0138 | 80 | - | 0.2923 |
0.0155 | 90 | - | 0.2888 |
0.0172 | 100 | 0.3016 | 0.2855 |
0.0189 | 110 | - | 0.2821 |
0.0206 | 120 | - | 0.2786 |
0.0224 | 130 | - | 0.2754 |
0.0241 | 140 | - | 0.2722 |
0.0258 | 150 | 0.2875 | 0.2684 |
0.0275 | 160 | - | 0.2653 |
0.0292 | 170 | - | 0.2629 |
0.0310 | 180 | - | 0.2611 |
0.0327 | 190 | - | 0.2597 |
0.0344 | 200 | 0.272 | 0.2588 |
0.0361 | 210 | - | 0.2585 |
0.0378 | 220 | - | 0.2584 |
0.0396 | 230 | - | 0.2584 |
0.0413 | 240 | - | 0.2584 |
0.0430 | 250 | 0.2652 | 0.2585 |
0.0447 | 260 | - | 0.2581 |
0.0464 | 270 | - | 0.2580 |
0.0482 | 280 | - | 0.2580 |
0.0499 | 290 | - | 0.2580 |
0.0516 | 300 | 0.2635 | 0.2578 |
0.0533 | 310 | - | 0.2578 |
0.0550 | 320 | - | 0.2575 |
0.0567 | 330 | - | 0.2572 |
0.0585 | 340 | - | 0.2573 |
0.0602 | 350 | 0.2608 | 0.2572 |
0.0619 | 360 | - | 0.2576 |
0.0636 | 370 | - | 0.2576 |
0.0653 | 380 | - | 0.2579 |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- spaCy: 3.7.5
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for najwaa/absa-laptops-aspect-p2
Base model
sentence-transformers/all-MiniLM-L6-v2