metadata
language: en
license: apache-2.0
tags:
- fake-news-detection
- bert
- text-classification
- transformers
NewsGuard AI - Fake News Detection Model
This model is a fine-tuned BERT-base-uncased model for detecting fake news. It is trained using the FakeNewsNet dataset.
Model Details
- Base Model: BERT-base-uncased
- Task: Text Classification (Fake vs. Real News)
- Dataset: FakeNewsNet (GossipCop & PolitiFact)
- Training Framework: Hugging Face Transformers
- Metrics: Accuracy, Precision, Recall
How to Use
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
model_path = "your-huggingface-username/newsguard-ai-fake-news"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
text = "Some news article text here..."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
prediction = "Fake" if torch.argmax(probs) == 0 else "Real"
print(f"Prediction: {prediction}, Confidence: {probs.tolist()[0]}")