bkk-ner-model

This model is a fine-tuned version of Geotrend/bert-base-th-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0518
  • Precision: 0.8850
  • Recall: 0.9615
  • F1: 0.9217
  • Accuracy: 0.9822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 8 0.5592 0.3698 0.6827 0.4797 0.7818
No log 2.0 16 0.4491 0.4831 0.8269 0.6099 0.8062
No log 3.0 24 0.3738 0.6226 0.9519 0.7529 0.8399
No log 4.0 32 0.1781 0.6691 0.8942 0.7654 0.9401
No log 5.0 40 0.2201 0.8095 0.9808 0.8870 0.9204
No log 6.0 48 0.0936 0.8130 0.9615 0.8811 0.9710
No log 7.0 56 0.0692 0.8197 0.9615 0.8850 0.9757
No log 8.0 64 0.0712 0.8264 0.9615 0.8889 0.9710
No log 9.0 72 0.0575 0.8621 0.9615 0.9091 0.9803
No log 10.0 80 0.0625 0.8487 0.9712 0.9058 0.9766
No log 11.0 88 0.0580 0.8584 0.9327 0.8940 0.9766
No log 12.0 96 0.0551 0.8684 0.9519 0.9083 0.9813
No log 13.0 104 0.0554 0.8761 0.9519 0.9124 0.9803
No log 14.0 112 0.0535 0.8772 0.9615 0.9174 0.9813
No log 15.0 120 0.0518 0.8850 0.9615 0.9217 0.9822

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
24
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support