See axolotl config
axolotl version: 0.9.1
# Name 0508-persona_principle_sft-qwen3_8b_base
# axolotl train experiments/0508-persona_principle_sft-qwen3_8b_base.yaml
base_model: Qwen/Qwen3-8B-Base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false
# --- Dataset Configuration ---
datasets:
- path: nate-rahn/0508-principle-persona-sft-dset
type: chat_template # Use the chat_template processing strategy
# --- Custom Template & Role Mapping ---
chat_template: tokenizer_default # Specify we are using a custom jinja template below
field_messages: messages # Assumes your dataset has a "bad_messages" key with a list of dicts
message_property_mappings: # Assumes each dict in the list has "role" and "content" keys
role: role
content: content
roles: # Define the roles expected in your dataset for mapping
user: ["user"] # Map "user" role in data to internal "user"
assistant: ["assistant"] # Map "assistant" role in data to internal "assistant"
system: ["system"] # Map "system" role in data to internal "system"
# --- Training Target ---
roles_to_train: ["assistant"]
train_on_eos: turn # Train on the EOS token at the end of each 'user' turn
dataset_prepared_path: /workspace/data/last_run_prepared
# --- Training Hyperparameters ---
sequence_len: 2048 # Adjust based on your dataset and GPU memory
sample_packing: true # Pack multiple sequences into one example for efficiency
eval_sample_packing: true
pad_to_sequence_len: true # Pad sequences to sequence_len
# Full Parameter Finetuning (No adapter specified)
# adapter: # This is intentionally left blank/removed for full finetuning
# Performance & Precision (H100s excel with bf16)
bf16: true
tf32: true
flash_attention: true # for qwen
# Batching (Adjust based on GPU memory)
# Effective global batch size = micro_batch_size * gradient_accumulation_steps * num_gpus (4)
# Start low for full finetuning, e.g., 1 * 16 * 4 = 64
micro_batch_size: 2
gradient_accumulation_steps: 32
eval_batch_size: 16 # Can often be slightly higher than micro_batch_size
# Optimizer & Scheduler
optimizer: adamw_torch_fused # Good choice for newer GPUs
learning_rate: 1e-5 # Common starting point for full SFT
weight_decay: 0.01
lr_scheduler: cosine # Standard scheduler
warmup_steps: 50
max_grad_norm: 1.0
# Training Duration & Evaluation/Saving
num_epochs: 2 # Adjust as needed, start with 1-3 for SFT
val_set_size: 0.01
logging_steps: 1
evals_per_epoch: 20
saves_per_epoch: 2 # Save 4 times per epoch (adjust based on dataset size)
save_total_limit: 1 # Keep only the last 1 checkpoints
# Memory Saving
gradient_checkpointing: true # Essential for full finetuning
gradient_checkpointing_kwargs:
use_reentrant: false # Prefer non-reentrant if possible
# --- FSDP Configuration (for 4xH100) ---
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_offload_params: false # Should not be needed with H100 VRAM
fsdp_sync_module_states: true # Important for correctness
fsdp_use_orig_params: false # Recommended for memory saving with FSDP
fsdp_state_dict_type: SHARDED_STATE_DICT # Options: FULL_STATE_DICT or SHARDED_STATE_DICT (saves disk space)
# fsdp_transformer_layer_cls_to_wrap: 'Gemma3DecoderLayer'
fsdp_transformer_layer_cls_to_wrap: 'Qwen3DecoderLayer'
# fsdp_activation_checkpointing: true # Alternative way to enable activation checkpointing for FSDP
# --- Special Tokens ---
# Define based on your custom template's terminators. Qwen already uses <|im_end|>
special_tokens:
eos_token: "<|im_end|>"
# eos_token: "<end_of_turn>"
# --- Logging & Saving ---
output_dir: /workspace/output/red-team-agent/runs/0508-persona_principle_sft-qwen3_8b_base # Local output directory
# W&B Logging
wandb_project: "red-team-agent" # Name your W&B project
wandb_entity: "nate" # IMPORTANT: Replace with your W&B username or team name
wandb_name: "0508-persona_principle_sft-qwen3_8b_base" # Descriptive run name
# wandb_log_model: "checkpoint" # Log model checkpoints to W&B Artifacts
# Hugging Face Hub Upload
hub_model_id: "nate-rahn/0508-persona_principle_sft-qwen3_8b_base" # IMPORTANT: Replace with your desired HF repo ID
hub_strategy: "end" # Push checkpoints to the Hub (`"end"` pushes only the final model)
hf_use_auth_token: true # Required for pushing to the Hub (ensure you're logged in)
# --- Misc ---
seed: 42
0508-persona_principle_sft-qwen3_8b_base
This model is a fine-tuned version of Qwen/Qwen3-8B-Base on the nate-rahn/0508-principle-persona-sft-dset dataset. It achieves the following results on the evaluation set:
- Loss: 2.2570
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.1102 | 0.0054 | 1 | 5.0903 |
4.6869 | 0.0543 | 10 | 4.4168 |
3.4043 | 0.1087 | 20 | 3.6086 |
3.2614 | 0.1630 | 30 | 3.2780 |
2.9574 | 0.2174 | 40 | 3.2620 |
3.0284 | 0.2717 | 50 | 3.0021 |
2.7515 | 0.3260 | 60 | 2.8933 |
2.8258 | 0.3804 | 70 | 2.7446 |
2.5825 | 0.4347 | 80 | 2.6995 |
2.6558 | 0.4890 | 90 | 2.5691 |
2.4854 | 0.5434 | 100 | 2.5690 |
2.6957 | 0.5977 | 110 | 2.5314 |
2.4035 | 0.6521 | 120 | 2.4879 |
2.9604 | 0.7064 | 130 | 2.5762 |
2.4454 | 0.7607 | 140 | 2.4713 |
2.3399 | 0.8151 | 150 | 2.4662 |
2.4051 | 0.8694 | 160 | 2.4147 |
2.3851 | 0.9238 | 170 | 2.4431 |
2.4061 | 0.9781 | 180 | 2.3823 |
2.4292 | 1.0272 | 190 | 2.4554 |
2.4125 | 1.0815 | 200 | 2.3628 |
2.2624 | 1.1358 | 210 | 2.3661 |
2.4571 | 1.1902 | 220 | 2.3544 |
2.2805 | 1.2445 | 230 | 2.3428 |
2.6547 | 1.2989 | 240 | 2.3283 |
2.2127 | 1.3532 | 250 | 2.3069 |
2.3363 | 1.4075 | 260 | 2.3121 |
2.2102 | 1.4619 | 270 | 2.2841 |
2.1397 | 1.5162 | 280 | 2.2880 |
2.1842 | 1.5706 | 290 | 2.2787 |
2.135 | 1.6249 | 300 | 2.2744 |
2.2115 | 1.6792 | 310 | 2.2641 |
2.0916 | 1.7336 | 320 | 2.2610 |
2.2539 | 1.7879 | 330 | 2.2603 |
2.1064 | 1.8422 | 340 | 2.2578 |
2.3234 | 1.8966 | 350 | 2.2575 |
2.1563 | 1.9509 | 360 | 2.2570 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nate-rahn/0508-persona_principle_sft-qwen3_8b_base
Base model
Qwen/Qwen3-8B-Base