See axolotl config
axolotl version: 0.9.1
# Name 0613-sft_len_wc_attrs-qwen3_8b_base
# axolotl train red_team_agent/run/t0613/sft_len_wc_attrs-qwen3_8b_base.yaml
base_model: Qwen/Qwen3-8B-Base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false
# --- Dataset Configuration ---
datasets:
- path: nate-rahn/0613-wc_attrs_sft_dset
type: chat_template # Use the chat_template processing strategy
# --- Custom Template & Role Mapping ---
chat_template: chatml # Specify we are using a custom jinja template below
field_messages: messages # Assumes your dataset has a "bad_messages" key with a list of dicts
message_property_mappings: # Assumes each dict in the list has "role" and "content" keys
role: role
content: content
roles: # Define the roles expected in your dataset for mapping
user: ["user"] # Map "user" role in data to internal "user"
assistant: ["assistant"] # Map "assistant" role in data to internal "assistant"
system: ["system"] # Map "system" role in data to internal "system"
# --- Training Target ---
roles_to_train: ["assistant"]
train_on_eos: turn # Train on the EOS token at the end of each 'user' turn
dataset_prepared_path: /workspace/data/last_run_prepared
# --- Training Hyperparameters ---
sequence_len: 2048 # Adjust based on your dataset and GPU memory
sample_packing: true # Pack multiple sequences into one example for efficiency
eval_sample_packing: true
pad_to_sequence_len: true # Pad sequences to sequence_len
# Full Parameter Finetuning (No adapter specified)
# adapter: # This is intentionally left blank/removed for full finetuning
# Performance & Precision (H100s excel with bf16)
bf16: true
tf32: true
flash_attention: true # for qwen
# Batching (Adjust based on GPU memory)
# Effective global batch size = micro_batch_size * gradient_accumulation_steps * num_gpus (4)
# Start low for full finetuning, e.g., 1 * 16 * 4 = 64
micro_batch_size: 2
gradient_accumulation_steps: 32
eval_batch_size: 16 # Can often be slightly higher than micro_batch_size
# Optimizer & Scheduler
optimizer: adamw_torch_fused # Good choice for newer GPUs
learning_rate: 1e-5 # Common starting point for full SFT
weight_decay: 0.01
lr_scheduler: cosine # Standard scheduler
warmup_steps: 50
max_grad_norm: 1.0
# Training Duration & Evaluation/Saving
num_epochs: 1 # Adjust as needed, start with 1-3 for SFT
val_set_size: 0.001
logging_steps: 1
evals_per_epoch: 20
saves_per_epoch: 2 # Save 4 times per epoch (adjust based on dataset size)
save_total_limit: 1 # Keep only the last 1 checkpoints
# Memory Saving
gradient_checkpointing: true # Essential for full finetuning
gradient_checkpointing_kwargs:
use_reentrant: false # Prefer non-reentrant if possible
# --- FSDP Configuration (for 4xH100) ---
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_offload_params: false # Should not be needed with H100 VRAM
fsdp_sync_module_states: true # Important for correctness
fsdp_use_orig_params: false # Recommended for memory saving with FSDP
fsdp_state_dict_type: SHARDED_STATE_DICT # Options: FULL_STATE_DICT or SHARDED_STATE_DICT (saves disk space)
# fsdp_transformer_layer_cls_to_wrap: 'Gemma3DecoderLayer'
fsdp_transformer_layer_cls_to_wrap: 'Qwen3DecoderLayer'
# fsdp_activation_checkpointing: true # Alternative way to enable activation checkpointing for FSDP
# --- Special Tokens ---
# Define based on your custom template's terminators. Qwen already uses <|im_end|>
special_tokens:
eos_token: "<|im_end|>"
# eos_token: "<end_of_turn>"
# --- Logging & Saving ---
output_dir: /workspace/red-team-agent/runs/0613-sft_len_wc_attrs-qwen3_8b_base # Local output directory
# W&B Logging
wandb_project: "red-team-agent" # Name your W&B project
wandb_entity: "nate" # IMPORTANT: Replace with your W&B username or team name
wandb_name: "0613-sft_len_wc_attrs-qwen3_8b_base" # Descriptive run name
# wandb_log_model: "checkpoint" # Log model checkpoints to W&B Artifacts
# Hugging Face Hub Upload
hub_model_id: "nate-rahn/0613-sft_len_wc_attrs-qwen3_8b_base" # IMPORTANT: Replace with your desired HF repo ID
hub_strategy: "end" # Push checkpoints to the Hub (`"end"` pushes only the final model)
hf_use_auth_token: true # Required for pushing to the Hub (ensure you're logged in)
# --- Misc ---
seed: 42
0613-sft_len_wc_attrs-qwen3_8b_base
This model is a fine-tuned version of Qwen/Qwen3-8B-Base on the nate-rahn/0613-wc_attrs_sft_dset dataset. It achieves the following results on the evaluation set:
- Loss: 0.9844
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4347 | 0.0010 | 1 | 2.6739 |
1.5017 | 0.0503 | 51 | 1.4456 |
1.1364 | 0.1006 | 102 | 1.2134 |
0.8372 | 0.1509 | 153 | 1.1617 |
1.2334 | 0.2012 | 204 | 1.1215 |
1.0855 | 0.2515 | 255 | 1.1147 |
0.8381 | 0.3018 | 306 | 1.0716 |
1.2104 | 0.3521 | 357 | 1.1103 |
1.0675 | 0.4024 | 408 | 1.0673 |
0.922 | 0.4527 | 459 | 1.0728 |
1.236 | 0.5030 | 510 | 1.0328 |
1.0469 | 0.5533 | 561 | 1.0385 |
0.8749 | 0.6036 | 612 | 1.0406 |
1.361 | 0.6539 | 663 | 1.0145 |
1.0454 | 0.7042 | 714 | 1.0028 |
0.8827 | 0.7545 | 765 | 0.9996 |
0.7909 | 0.8048 | 816 | 0.9933 |
1.0521 | 0.8551 | 867 | 0.9874 |
0.9136 | 0.9054 | 918 | 0.9850 |
0.6762 | 0.9557 | 969 | 0.9844 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nate-rahn/0613-sft_len_wc_attrs-qwen3_8b_base
Base model
Qwen/Qwen3-8B-Base