scibert-base-uncased-ner

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0191
  • Cases: {'precision': 0.9767981438515081, 'recall': 0.967816091954023, 'f1': 0.972286374133949, 'number': 435}
  • Country: {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549}
  • Date: {'precision': 0.9706896551724138, 'recall': 0.9690189328743546, 'f1': 0.9698535745047373, 'number': 581}
  • Deaths: {'precision': 0.9529411764705882, 'recall': 0.9501466275659824, 'f1': 0.9515418502202643, 'number': 341}
  • Virus: {'precision': 0.9963235294117647, 'recall': 0.998158379373849, 'f1': 0.9972401103955841, 'number': 543}
  • Overall Precision: 0.9760
  • Overall Recall: 0.9796
  • Overall F1: 0.9778
  • Overall Accuracy: 0.9923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Cases Country Date Deaths Virus Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 291 0.0411 {'precision': 0.90744920993228, 'recall': 0.9241379310344827, 'f1': 0.9157175398633258, 'number': 435} {'precision': 0.9699646643109541, 'recall': 1.0, 'f1': 0.9847533632286996, 'number': 549} {'precision': 0.9149305555555556, 'recall': 0.9070567986230637, 'f1': 0.9109766637856526, 'number': 581} {'precision': 0.8830769230769231, 'recall': 0.841642228739003, 'f1': 0.8618618618618619, 'number': 341} {'precision': 0.9889908256880734, 'recall': 0.992633517495396, 'f1': 0.9908088235294119, 'number': 543} 0.9385 0.9408 0.9396 0.9861
0.1005 2.0 582 0.0291 {'precision': 0.9733656174334141, 'recall': 0.9241379310344827, 'f1': 0.9481132075471699, 'number': 435} {'precision': 0.9699646643109541, 'recall': 1.0, 'f1': 0.9847533632286996, 'number': 549} {'precision': 0.9512195121951219, 'recall': 0.9397590361445783, 'f1': 0.9454545454545454, 'number': 581} {'precision': 0.9161849710982659, 'recall': 0.9296187683284457, 'f1': 0.9228529839883551, 'number': 341} {'precision': 0.9889908256880734, 'recall': 0.992633517495396, 'f1': 0.9908088235294119, 'number': 543} 0.9628 0.9608 0.9618 0.9910
0.1005 3.0 873 0.0221 {'precision': 0.9764705882352941, 'recall': 0.9540229885057471, 'f1': 0.9651162790697674, 'number': 435} {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549} {'precision': 0.9706896551724138, 'recall': 0.9690189328743546, 'f1': 0.9698535745047373, 'number': 581} {'precision': 0.9552238805970149, 'recall': 0.9384164222873901, 'f1': 0.9467455621301775, 'number': 341} {'precision': 0.9963235294117647, 'recall': 0.998158379373849, 'f1': 0.9972401103955841, 'number': 543} 0.9763 0.9755 0.9759 0.9929
0.0237 4.0 1164 0.0216 {'precision': 0.9789719626168224, 'recall': 0.9632183908045977, 'f1': 0.9710312862108922, 'number': 435} {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549} {'precision': 0.9740034662045061, 'recall': 0.9672977624784854, 'f1': 0.9706390328151987, 'number': 581} {'precision': 0.9502923976608187, 'recall': 0.9530791788856305, 'f1': 0.951683748169839, 'number': 341} {'precision': 0.9944954128440368, 'recall': 0.998158379373849, 'f1': 0.9963235294117647, 'number': 543} 0.9764 0.9788 0.9776 0.9921
0.0237 5.0 1455 0.0191 {'precision': 0.9767981438515081, 'recall': 0.967816091954023, 'f1': 0.972286374133949, 'number': 435} {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549} {'precision': 0.9706896551724138, 'recall': 0.9690189328743546, 'f1': 0.9698535745047373, 'number': 581} {'precision': 0.9529411764705882, 'recall': 0.9501466275659824, 'f1': 0.9515418502202643, 'number': 341} {'precision': 0.9963235294117647, 'recall': 0.998158379373849, 'f1': 0.9972401103955841, 'number': 543} 0.9760 0.9796 0.9778 0.9923

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
15
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nattkorat/scibert-base-uncased-ner

Finetuned
(85)
this model

Space using nattkorat/scibert-base-uncased-ner 1