scibert-base-uncased-ner
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0191
- Cases: {'precision': 0.9767981438515081, 'recall': 0.967816091954023, 'f1': 0.972286374133949, 'number': 435}
- Country: {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549}
- Date: {'precision': 0.9706896551724138, 'recall': 0.9690189328743546, 'f1': 0.9698535745047373, 'number': 581}
- Deaths: {'precision': 0.9529411764705882, 'recall': 0.9501466275659824, 'f1': 0.9515418502202643, 'number': 341}
- Virus: {'precision': 0.9963235294117647, 'recall': 0.998158379373849, 'f1': 0.9972401103955841, 'number': 543}
- Overall Precision: 0.9760
- Overall Recall: 0.9796
- Overall F1: 0.9778
- Overall Accuracy: 0.9923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Cases | Country | Date | Deaths | Virus | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 291 | 0.0411 | {'precision': 0.90744920993228, 'recall': 0.9241379310344827, 'f1': 0.9157175398633258, 'number': 435} | {'precision': 0.9699646643109541, 'recall': 1.0, 'f1': 0.9847533632286996, 'number': 549} | {'precision': 0.9149305555555556, 'recall': 0.9070567986230637, 'f1': 0.9109766637856526, 'number': 581} | {'precision': 0.8830769230769231, 'recall': 0.841642228739003, 'f1': 0.8618618618618619, 'number': 341} | {'precision': 0.9889908256880734, 'recall': 0.992633517495396, 'f1': 0.9908088235294119, 'number': 543} | 0.9385 | 0.9408 | 0.9396 | 0.9861 |
0.1005 | 2.0 | 582 | 0.0291 | {'precision': 0.9733656174334141, 'recall': 0.9241379310344827, 'f1': 0.9481132075471699, 'number': 435} | {'precision': 0.9699646643109541, 'recall': 1.0, 'f1': 0.9847533632286996, 'number': 549} | {'precision': 0.9512195121951219, 'recall': 0.9397590361445783, 'f1': 0.9454545454545454, 'number': 581} | {'precision': 0.9161849710982659, 'recall': 0.9296187683284457, 'f1': 0.9228529839883551, 'number': 341} | {'precision': 0.9889908256880734, 'recall': 0.992633517495396, 'f1': 0.9908088235294119, 'number': 543} | 0.9628 | 0.9608 | 0.9618 | 0.9910 |
0.1005 | 3.0 | 873 | 0.0221 | {'precision': 0.9764705882352941, 'recall': 0.9540229885057471, 'f1': 0.9651162790697674, 'number': 435} | {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549} | {'precision': 0.9706896551724138, 'recall': 0.9690189328743546, 'f1': 0.9698535745047373, 'number': 581} | {'precision': 0.9552238805970149, 'recall': 0.9384164222873901, 'f1': 0.9467455621301775, 'number': 341} | {'precision': 0.9963235294117647, 'recall': 0.998158379373849, 'f1': 0.9972401103955841, 'number': 543} | 0.9763 | 0.9755 | 0.9759 | 0.9929 |
0.0237 | 4.0 | 1164 | 0.0216 | {'precision': 0.9789719626168224, 'recall': 0.9632183908045977, 'f1': 0.9710312862108922, 'number': 435} | {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549} | {'precision': 0.9740034662045061, 'recall': 0.9672977624784854, 'f1': 0.9706390328151987, 'number': 581} | {'precision': 0.9502923976608187, 'recall': 0.9530791788856305, 'f1': 0.951683748169839, 'number': 341} | {'precision': 0.9944954128440368, 'recall': 0.998158379373849, 'f1': 0.9963235294117647, 'number': 543} | 0.9764 | 0.9788 | 0.9776 | 0.9921 |
0.0237 | 5.0 | 1455 | 0.0191 | {'precision': 0.9767981438515081, 'recall': 0.967816091954023, 'f1': 0.972286374133949, 'number': 435} | {'precision': 0.9751332149200711, 'recall': 1.0, 'f1': 0.9874100719424461, 'number': 549} | {'precision': 0.9706896551724138, 'recall': 0.9690189328743546, 'f1': 0.9698535745047373, 'number': 581} | {'precision': 0.9529411764705882, 'recall': 0.9501466275659824, 'f1': 0.9515418502202643, 'number': 341} | {'precision': 0.9963235294117647, 'recall': 0.998158379373849, 'f1': 0.9972401103955841, 'number': 543} | 0.9760 | 0.9796 | 0.9778 | 0.9923 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nattkorat/scibert-base-uncased-ner
Base model
allenai/scibert_scivocab_uncased