scibert-base-uncased-ner-tuning
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0055
- Cases: {'precision': 1.0, 'recall': 0.9984615384615385, 'f1': 0.9992301770592764, 'number': 650}
- Country: {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760}
- Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109}
- Deaths: {'precision': 0.9978260869565218, 'recall': 0.9956616052060737, 'f1': 0.996742671009772, 'number': 461}
- Virus: {'precision': 0.998995983935743, 'recall': 0.9979939819458375, 'f1': 0.9984947315604615, 'number': 997}
- Overall Precision: 0.9990
- Overall Recall: 0.9976
- Overall F1: 0.9983
- Overall Accuracy: 0.9992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Cases | Country | Date | Deaths | Virus | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 291 | 0.0042 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 650} | {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} | {'precision': 1.0, 'recall': 0.9978308026030369, 'f1': 0.998914223669924, 'number': 461} | {'precision': 0.9969727547931383, 'recall': 0.9909729187562688, 'f1': 0.993963782696177, 'number': 997} | 0.9987 | 0.9960 | 0.9973 | 0.9990 |
0.0545 | 2.0 | 582 | 0.0055 | {'precision': 1.0, 'recall': 0.9953846153846154, 'f1': 0.9976869699306091, 'number': 650} | {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} | {'precision': 0.9935344827586207, 'recall': 1.0, 'f1': 0.9967567567567568, 'number': 461} | {'precision': 0.9979879275653923, 'recall': 0.9949849548645938, 'f1': 0.9964841788046208, 'number': 997} | 0.9980 | 0.9966 | 0.9973 | 0.9990 |
0.0545 | 3.0 | 873 | 0.0071 | {'precision': 1.0, 'recall': 0.9969230769230769, 'f1': 0.9984591679506933, 'number': 650} | {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} | {'precision': 0.9956331877729258, 'recall': 0.9891540130151844, 'f1': 0.9923830250272034, 'number': 461} | {'precision': 0.9979879275653923, 'recall': 0.9949849548645938, 'f1': 0.9964841788046208, 'number': 997} | 0.9983 | 0.9953 | 0.9968 | 0.9987 |
0.0035 | 4.0 | 1164 | 0.0051 | {'precision': 1.0, 'recall': 0.9984615384615385, 'f1': 0.9992301770592764, 'number': 650} | {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} | {'precision': 0.9978260869565218, 'recall': 0.9956616052060737, 'f1': 0.996742671009772, 'number': 461} | {'precision': 0.998995983935743, 'recall': 0.9979939819458375, 'f1': 0.9984947315604615, 'number': 997} | 0.9990 | 0.9976 | 0.9983 | 0.9992 |
0.0035 | 5.0 | 1455 | 0.0055 | {'precision': 1.0, 'recall': 0.9984615384615385, 'f1': 0.9992301770592764, 'number': 650} | {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} | {'precision': 0.9978260869565218, 'recall': 0.9956616052060737, 'f1': 0.996742671009772, 'number': 461} | {'precision': 0.998995983935743, 'recall': 0.9979939819458375, 'f1': 0.9984947315604615, 'number': 997} | 0.9990 | 0.9976 | 0.9983 | 0.9992 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nattkorat/scibert-base-uncased-ner-tuning
Base model
allenai/scibert_scivocab_uncased