scibert-base-uncased-ner-tuning

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0055
  • Cases: {'precision': 1.0, 'recall': 0.9984615384615385, 'f1': 0.9992301770592764, 'number': 650}
  • Country: {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760}
  • Date: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109}
  • Deaths: {'precision': 0.9978260869565218, 'recall': 0.9956616052060737, 'f1': 0.996742671009772, 'number': 461}
  • Virus: {'precision': 0.998995983935743, 'recall': 0.9979939819458375, 'f1': 0.9984947315604615, 'number': 997}
  • Overall Precision: 0.9990
  • Overall Recall: 0.9976
  • Overall F1: 0.9983
  • Overall Accuracy: 0.9992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Cases Country Date Deaths Virus Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 291 0.0042 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 650} {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} {'precision': 1.0, 'recall': 0.9978308026030369, 'f1': 0.998914223669924, 'number': 461} {'precision': 0.9969727547931383, 'recall': 0.9909729187562688, 'f1': 0.993963782696177, 'number': 997} 0.9987 0.9960 0.9973 0.9990
0.0545 2.0 582 0.0055 {'precision': 1.0, 'recall': 0.9953846153846154, 'f1': 0.9976869699306091, 'number': 650} {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} {'precision': 0.9935344827586207, 'recall': 1.0, 'f1': 0.9967567567567568, 'number': 461} {'precision': 0.9979879275653923, 'recall': 0.9949849548645938, 'f1': 0.9964841788046208, 'number': 997} 0.9980 0.9966 0.9973 0.9990
0.0545 3.0 873 0.0071 {'precision': 1.0, 'recall': 0.9969230769230769, 'f1': 0.9984591679506933, 'number': 650} {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} {'precision': 0.9956331877729258, 'recall': 0.9891540130151844, 'f1': 0.9923830250272034, 'number': 461} {'precision': 0.9979879275653923, 'recall': 0.9949849548645938, 'f1': 0.9964841788046208, 'number': 997} 0.9983 0.9953 0.9968 0.9987
0.0035 4.0 1164 0.0051 {'precision': 1.0, 'recall': 0.9984615384615385, 'f1': 0.9992301770592764, 'number': 650} {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} {'precision': 0.9978260869565218, 'recall': 0.9956616052060737, 'f1': 0.996742671009772, 'number': 461} {'precision': 0.998995983935743, 'recall': 0.9979939819458375, 'f1': 0.9984947315604615, 'number': 997} 0.9990 0.9976 0.9983 0.9992
0.0035 5.0 1455 0.0055 {'precision': 1.0, 'recall': 0.9984615384615385, 'f1': 0.9992301770592764, 'number': 650} {'precision': 0.9986824769433466, 'recall': 0.9973684210526316, 'f1': 0.9980250164581962, 'number': 760} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 109} {'precision': 0.9978260869565218, 'recall': 0.9956616052060737, 'f1': 0.996742671009772, 'number': 461} {'precision': 0.998995983935743, 'recall': 0.9979939819458375, 'f1': 0.9984947315604615, 'number': 997} 0.9990 0.9976 0.9983 0.9992

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nattkorat/scibert-base-uncased-ner-tuning

Finetuned
(85)
this model