Experimenting with pre-training Arabic language + finetuning on instructions using the quantized model mistralai/Mistral-7B-v0.3
from unsloth
. First time trying pre-training, expect issues and low quality outputs. The repo contains the merged, quantized model and a GGUF format.
See spaces demo example.
Example usage
llama-cpp-python
from llama_cpp import Llama
inference_prompt = """فيما يلي تعليمات تصف مهمة. اكتب استجابة تكمل الطلب بشكل مناسب.
### تعليمات:
{}
### إجابة:
"""
llm = Llama.from_pretrained(
repo_id="nazimali/mistral-7b-v0.3-instruct-arabic",
filename="Q4_K_M.gguf",
)
llm.create_chat_completion(
messages = [
{
"role": "user",
"content": inference_prompt.format("السلام عليكم كيف حالك؟")
}
]
)
llama.cpp
./llama-cli \
--hf-repo "nazimali/mistral-7b-v0.3-instruct-arabic" \
--hf-file Q4_K_M.gguf \
-p "السلام عليكم كيف حالك؟" \
--conversation
Training
Pre-training data:
wikimedia/wikipedia
20231101.ar
- Used 6,096 rows, 0.05% of the total data
Finetuning data:
FreedomIntelligence/alpaca-gpt4-arabic
- Used 49,969 rows, 100% of all the data
Finetuning instruction format:
finetune_prompt = """فيما يلي تعليمات تصف مهمة. اكتب استجابة تكمل الطلب بشكل مناسب.
### تعليمات:
{}
### إجابة:
"""
- Downloads last month
- 437
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for nazimali/mistral-7b-v0.3-instruct-arabic
Base model
mistralai/Mistral-7B-v0.3