neoAI-JP-QwQ-32B
neoAI-JP-QwQ-32BはQwen2.5-32BとQwQ-32Bをベースにした日本語Reasoningモデルです。 Qwen2.5-32Bに対して日本語で継続事前学習を行ったモデルに対してQwQ-32BのChat Vectorをマージして作成しました。
詳細はブログ記事を参照してください。
neoAI 日本語Reasoning Model を開発 Part 1 継続事前学習
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "neoAI/neoAI-JP-QwQ-32B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r's are in the word \"strawberry\""
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Developed by
Developers
以下アルファベット順
- Gouki Minegishi
- Kai Yamashita
- Koki Itai
- Masaki Otsuki
- Toshiki Kawamoto
How to Cite
@misc{neoAI-JP-QwQ-32B,
title={neoAI-JP-QwQ-32B},
url={https://huggingface.co/neoai-inc/neoAI-JP-QwQ-32B},
author={Gouki Minegishi and Kai Yamashita and Koki Itai and Masaki Otsuki and Toshiki Kawamoto},
year={2025},
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support