bge-reranker-v2-m3 / README.md
netandreus's picture
Upload folder using huggingface_hub
d3e2300 verified
|
raw
history blame
1.44 kB
---
license: mit
base_model: BAAI/bge-reranker-v2-m3
tags:
- generated_from_trainer
library_name: sentence-transformers
pipeline_tag: text-ranking
model-index:
- name: bge_reranker
results: []
---
# Reranker model
- [Reranker model](#reranker-model)
- [Brief information](#brief-information)
- [Supporting architectures](#supporting-architectures)
- [Local inference example](#local-inference-example)
## Brief information
This repository contains reranker model ```bge-reranker-v2-m3``` which you can run on HuggingFace Inference Endpoints.
- Base model: [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with no any fine tune.
- Commit: [953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e](https://huggingface.co/BAAI/bge-reranker-v2-m3/commit/953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e)
**More details please refer to the [repo of bse model](https://huggingface.co/BAAI/bge-reranker-v2-m3).**
## Supporting architectures
- Apple Silicon MPS
- Nvidia GPU
- HuggingFace Inference Endpoints (AWS)
- CPU (Intel Sapphire Rapids, 4 vCPU, 8 Gb)
- GPU (Nvidia T4)
- Infernia 2 (2 cores, 32 Gb RAM)
## Local inference example
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('netandreus/bge-reranker-v2-m3', use_fp16=True)
scores = reranker.compute_score(arr, normalize=True)
if not isinstance(scores, list):
scores = [scores]
print(scores) # [-8.1875, 5.26171875]
```