Edit model card

gemma-2-2b-it-quantized.w8a16

Model Overview

  • Model Architecture: Gemma 2
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT8
  • Intended Use Cases: Intended for commercial and research use in English. Similarly to gemma-2-2b, this is a pre-trained base model that can be used as is or specialized to specific domains.
  • Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
  • Release Date: 8/13/2024
  • Version: 1.0
  • License(s): gemma
  • Model Developers: Neural Magic

Quantized version of gemma-2-2b. It achieves an average score of 52.03 on the OpenLLM benchmark (version 1), whereas the unquantized model achieves 52.16.

Model Optimizations

This model was obtained by quantizing the weights of gemma-2-2b to INT8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.

Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library. GPTQ used a 1% damping factor and 256 sequences sequences taken from Neural Magic's LLM compression calibration dataset.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic/gemma-2-2b-quantized.w8a16"

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "user", "content": "Who are you? Please respond in pirate speak!"},
]

prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

llm = LLM(model=model_id)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created by using the llm-compressor library as presented in the code snipet below.

from transformers import AutoTokenizer
from datasets import load_dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier

model_id = "google/gemma-2-2b"

num_samples = 256
max_seq_len = 8192

tokenizer = AutoTokenizer.from_pretrained(model_id)

def preprocess_fn(example):
  return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}

ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)

recipe = GPTQModifier(
  targets="Linear",
  scheme="W8A16",
  ignore=["lm_head"],
  dampening_frac=0.01,
)

model = SparseAutoModelForCausalLM.from_pretrained(
  model_id,
  device_map="auto",
  trust_remote_code=True,
)

oneshot(
  model=model,
  dataset=ds,
  recipe=recipe,
  max_seq_length=max_seq_len,
  num_calibration_samples=num_samples,
)
model.save_pretrained("gemma-2-2b-quantized.w8a16")

Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (version 1) with the lm-evaluation-harness (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the vLLM engine, using the following command:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/gemma-2-2b-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
  --tasks openllm \
  --batch_size auto

Accuracy

Open LLM Leaderboard evaluation scores

Benchmark gemma-2-2b gemma-2-2b-quantized.w8a16 (this model) Recovery
MMLU (5-shot) 53.01 52.86 99.7%
ARC Challenge (25-shot) 53.92 54.27 100.6%
GSM-8K (5-shot, strict-match) 24.03 23.81 99.1%
Hellaswag (10-shot) 74.74 74.56 99.8%
Winogrande (5-shot) 70.96 70.56 99.4%
TruthfulQA (0-shot) 36.29 36.15 99.6%
Average 52.16 52.03 99.8%
Downloads last month
52
Safetensors
Model size
1.69B params
Tensor type
F32
·
I64
·
I32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including neuralmagic/gemma-2-2b-quantized.w8a16