Qwen2.5-Coder-32B DBT Fine-tuned Model (Merged)
This is a merged model created from Qwen/Qwen2.5-Coder-32B-Instruct fine-tuned with LoRA for DBT (Data Build Tool) code generation tasks.
Model Details
- Base Model: Qwen/Qwen2.5-Coder-32B-Instruct
- Fine-tuning Method: LoRA (merged into full weights)
- Task: Code generation for DBT SQL models
- Training Framework: Unsloth + Transformers
Usage with VLLM
python -m vllm.entrypoints.openai.api_server \
--model neutrino12/tensorstax-sft-unsloth-32b-dora32-3020 \
--host 0.0.0.0 \
--port 8000 \
--max-model-len 32768 \
--trust-remote-code
Usage with Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"neutrino12/tensorstax-sft-unsloth-32b-dora32-3020",
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"neutrino12/tensorstax-sft-unsloth-32b-dora32-3020",
trust_remote_code=True
)
# Generate text
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Training Details
This model was fine-tuned using LoRA with the following configuration:
- LoRA Rank: 32
- LoRA Alpha: 64
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Learning Rate: 1e-5
- Sequence Length: 8000
The LoRA adapter was then merged back into the full model weights for easier deployment.
- Downloads last month
- 9
Model tree for neutrino12/tensorstax-sft-unsloth-32b-dora32-3020
Base model
Qwen/Qwen2.5-32B
Finetuned
Qwen/Qwen2.5-Coder-32B
Finetuned
Qwen/Qwen2.5-Coder-32B-Instruct